

Automation Adoption and the Margins of Export Performance: Evidence from French firms

Thao Trang Nguyen Giacomo Domini Marco Grazzi Daniele
Moschella Tania Treibich¹

¹School of Business and Economics, Maastricht University (The Netherlands)

Intangible Assets, Digitalisation and
Asymmetries in European Value Chains

PRIN Project Workshop, 23 January 2026, Rome, Italy

Previous literature

Automation increases firm performance

Automation adoption → Firm performance

- ▶ *Employment and wages*

Studies on the firm level impact of automation generally show an increase in employment and wages

(Acemoglu, Lelarge, and Restrepo, 2020; Dixon, Hong, and Wu, 2019; Domini et al., 2021, 2022; Humlum, 2021; Koch, Manuylov, and Smolka, 2021)

- ▶ *Competition effect*

Automation can then be viewed as a source of firm competitiveness leading to increases in market share at the expense of non-adopting firms

(Bajgar et al., 2019; Acemoglu and Restrepo, 2020; Babiana et al., 2020; Firooz et al., 2022; Bisio et al., 2025)

Previous literature

Automation increases firm performance

Automation adoption → Firm performance

- ▶ *Employment and wages*

Studies on the firm level impact of automation generally show an increase in employment and wages

(Acemoglu, Lelarge, and Restrepo, 2020; Dixon, Hong, and Wu, 2019; Domini et al., 2021, 2022; Humlum, 2021; Koch, Manuylov, and Smolka, 2021)

- ▶ *Competition effect*

Automation can then be viewed as a source of firm competitiveness leading to increases in market share at the expense of non-adopting firms

(Bajgar et al., 2019; Acemoglu and Restrepo, 2020; Babiana et al., 2020; Firooz et al., 2022; Bisio et al., 2025)

Trade data can help identifying the sources of this competitiveness

Previous literature

Export effects documented but limited understanding

- ▶ Robots increase export participation and sales (Artuc et al. 2023; Lin et al. 2022)
- ▶ 3D printing: +80% hearing aid exports via customization (Freund et al. 2022)
- ▶ **Gap:** Little evidence on *how* product scope shapes these effects

Our premise: **Scope economies** as the key driver—automation investments often exhibit low scope economies, creating different strategic responses

Our contribution

We study whether and how automation adoption affects firms' export performance.

What:

- ▶ Beyond single-technology focus (robots) to a broad array of automation technologies
- ▶ From aggregate export outcomes to composition (products vs. destinations)
- ▶ Role of firm heterogeneity: single- vs. multi-product, size, and resource allocation between product vs. process innovation
 - ▶ **Product scope**, not size alone, governs whether automation induces **substitution** (process focus) or **complementarity** (product + process)

How:

- ▶ We exploit transaction-level customs data from France
- ▶ We execute a staggered diff-in-diff analysis, resorting to state-of-the-art methodologies in the field (Callaway and Sant'Anna, 2021)

Data and Measurement

Data Sources:

- ▶ **French Customs (DGDDI)**: Transaction-level trade data, 8-digit product codes
- ▶ **Fiscal Data (FICUS/FARE)**: Balance sheet, revenue accounts
- ▶ **Employment Data (DADS)**: Wages, employment

Measuring Automation Adoption:

- ▶ **Imports** of capital goods embedding automation technologies
- ▶ Identified via HS6 codes: robots, 3D printers, CNC machines, automated tools, etc.
- ▶ **Automation spike** = firm's largest automation adoption event

Sample: 22,386 manufacturing firms that import automation goods (2002-2019)

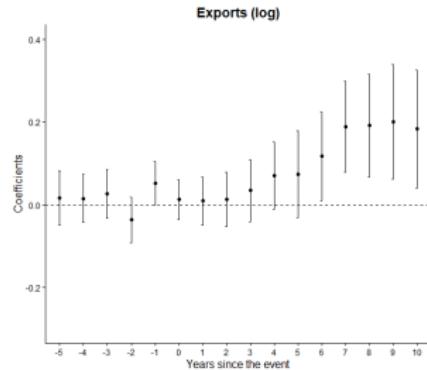
Empirical Strategy

Staggered Difference-in-Differences

Challenge:

Multiple treatment periods with staggered adoption \Rightarrow Traditional TWFE can be biased

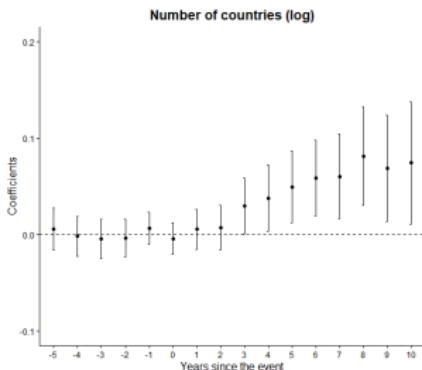
Solution: Staggered did-in dif methods

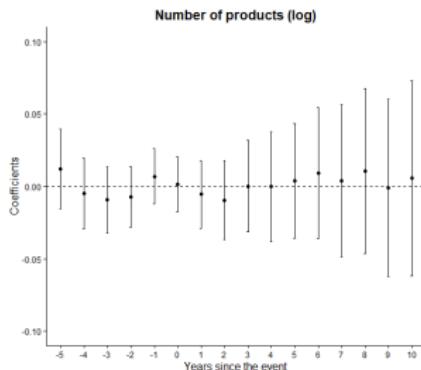

(Borusyak et al., 2021; Callaway and Sant'Anna, 2021; de Chaisemartin and D'Haultfoeuille, 2020; Sun and Abraham, 2021)

We use the Callaway-Sant'Anna (2021) estimator

- ▶ Compares each cohort to never-treated firms
- ▶ Controls for parallel trends using firm characteristics
- ▶ Averages treatment effects across cohorts and time periods

Outcomes: Log exports, log # countries, log # products, export share


Main results - Event study


$$ATT_{aggre} = 0.149 (0.032)**$$

$$ATT_{aggre} = 0.014 (0.003)**$$

$$ATT_{aggre} = 0.070 (0.014)**$$

$$ATT_{aggre} = 0.018 (0.016)$$

Heterogeneity: technology, size, and product scope

Three dimensions

- ▶ **Technology type:** 3D printers vs. robots
- ▶ **Firm size:** very small, small, medium, large
- ▶ **Product scope (key):** single-product (SPF) vs. multi-product (MPF)

Findings

- ▶ 3D printing: export gains; robots: no clear export effects
- ▶ Effects concentrated in SMEs (small/medium); null for very small and large
- ▶ **Scope trade-off:** SPF_s expand products & markets; MPF_s expand markets, prune products

Mechanisms: Why do SPF_s and MPF_s respond differently?

Having established that product scope drives heterogeneous automation effects, we examine two key mechanisms that explain the divergent responses:

Two channels:

- ▶ **Export destination channel:** Do firms target high-income vs. low-income markets differently?
- ▶ **Product complexity channel:** Do firms upgrade or streamline their product offerings?

Mechanism 1: Export destination channel

Which markets do automating firms enter? High-income vs. low-income destinations reveal different strategies.

Mechanism — Destinations

Dep var:	Exports HI (log)	Exports LI (log)	Nb countries HI (log)	Nb countries LI (log)	Nb products HI (log)	Nb products LI (log)
Panel A. All firms						
ATT_{aggr}	0.134** (0.035)	0.142** (0.047)	0.042** (0.015)	0.040** (0.018)	0.009 (0.019)	0.010 (0.021)
Nb of obs	282,559	184,535	282,564	184,543	278,872	157,899
Panel B. Only single-product firms						
ATT_{aggr}	0.797** (0.115)		0.265** (0.032)		0.455** (0.03)	
Nb of obs	59,968		59,972		58,980	
Panel C. Only multi-product firms						
ATT_{aggr}	0.046 (0.037)	0.111** (0.050)	0.090** (0.018)	0.043** (0.021)	0.009 (0.017)	0.004 (0.025)
Nb of obs	213,143	155,629	213,143	155,635	210,627	132,211

Notes: HI = High-income, LI = Low-income countries. CS estimates; firm-clustered SEs. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

Mechanism 2: Product complexity channel

Does automation change the sophistication of what firms produce? We examine the complexity of firms' most advanced products.

Mechanism — Product complexity

Dep var:	Top complexity
Panel A. All firms	
ATT_{aggre}	-0.102** (0.045)
Nb of obs	303,398
Panel B. Only single-product firms	
ATT_{aggre}	0.335** (0.038)
Nb of obs	72,287
Panel C. Only multi-product firms	
ATT_{aggre}	-0.119** (0.052)
Nb of obs	220,725

Notes: Top complexity = maximum complexity in firm's product portfolio. CS estimates; firm-clustered SEs. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

Robustness checks

We perform extensive robustness checks to ensure our findings are not driven by specific methodological choices or confounding factors:

Four categories of checks:

- ▶ **Alternative methodology:** IV estimation using different identification assumptions
- ▶ **Alternative spike definitions:** Relative thresholds, late adopters only
- ▶ **Sample restrictions:** Exclude re-exporters, focus on continuous exporters
- ▶ **Technical checks:** Anticipation effects, additional covariates

All robustness checks confirm our main findings. Results are qualitatively identical, with some checks revealing additional significant effects on product scope.

Conclusion

Main findings:

- ▶ Automation adoption increases export performance
- ▶ Effects driven by market expansion rather than product diversification
- ▶ **Key insight:** Product scope, not firm size, determines automation's impact

Conclusion

Main findings:

- ▶ Automation adoption increases export performance
- ▶ Effects driven by market expansion rather than product diversification
- ▶ **Key insight:** Product scope, not firm size, determines automation's impact

Single-product firms (SPFs):

- ▶ Target high-income markets (quality-focused strategy), increase product complexity and scope
- ▶ Use automation to enhance capabilities and expand offerings
- ▶ Leverage automation for **complementarity** between product and market expansion

Multi-product firms (MPFs):

- ▶ Expand primarily in low-income markets (cost-focused strategy), reduce product complexity and consolidate portfolio
- ▶ Use automation to become "leaner and meaner"
- ▶ Face **substitution** between product innovation and market expansion

Thank you

Contact: t.treibich@maastrichtuniversity.nl

Appendix

Automation Technologies (HS6 Codes)

Table 1: HS 2012 codes for automation capital goods (Table ??)

	HS-2012 codes
1. Industrial robots	847950
2. Dedicated machinery	847989
3. Automatic machine tools	845600-846699, 846820-846899, 851511-851519
4. Automatic welding machines	851521, 851531, 851580, 851590
5. Weaving and knitting machines	844600-844699, 844700-844799
6. Other textile machinery	844400-844590
7. Automatic conveyors	842831-842839
8. Automatic regulating instruments	903200-903299
9. 3-D printers	847780

Measurement challenges

1. Overestimating automation adoption

Some importing firms may not actually use imported automation goods as they can resell them in the domestic or international markets:

- ▶ We focus on manufacturing firms, excluding intermediaries
- ▶ We conduct robustness checks excluding re-exporters

2. Underestimating automation adoption

Firms may adopt automation through other channels, either through domestic market purchases or via intermediaries rather than direct imports

- ▶ France has a comparative disadvantage in producing automation goods (see Domini et al. 2021)
- ▶ We restrict our analysis to firms active in international trade, comparing adopters with non-adopters
- ▶ Complex automation goods typically bypass intermediaries (Bernard et al., 2015)