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Abstract 

This paper investigates the firm-level predictors of artificial intelligence (AI) innovation in Europe using a 
machine learning (ML) approach. Drawing on a matched dataset that combines patent information from 
OECD REGPAT with firm-level financial and structural indicators from ORBIS Intellectual Property, we model 
the probability that a firm filed at least one AI-related patent at the European Patent Office (EPO) in 2020. AI 
patenting is identified using the World Intellectual Property Organization (WIPO) taxonomy. At the same time, 
the predictor set includes sectoral dummies, innovation and technological capabilities, balance sheet 
indicators, and interaction terms, resulting in a high-dimensional feature space. We compare traditional 
econometric models (Probit) with ML classifiers, including LASSO, Elastic Net, and Random Forest. Results 
reveal that ML algorithms significantly outperform Probit in identifying AI innovators, with Random Forest 
achieving the highest sensitivity (0.815) and balanced accuracy (0.854). These improvements are particularly 
valuable given the small share of firms performing AI patenting in the sample (3.7%). Variable importance 
analysis highlights ICT specialisation, patent stock, firm size, and market concentration as key drivers of AI 
innovation. Moreover, several interaction terms—such as those involving size, sector, and innovation intensity—
emerge as critical in improving classification performance. These findings suggest that heterogeneities and 
nonlinear factors should be considered when predicting AI patenting. From a policy perspective, our results 
highlight that ML could help improve the tailoring of innovation policies by identifying firms with 
transformative potential. Supporting digital infrastructure, facilitating the diffusion of innovation beyond ICT-
intensive hubs and tailoring strategies to firm size could make Europe's AI transformation more inclusive. 
Overall, this study demonstrates the analytical power of ML in uncovering complex innovation dynamics and 
providing actionable insights for scholars and policymakers. 
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1. Introduction 

Innovation is a key factor for firms, as it is the driver of long-term growth and international competitiveness 

(Dosi et al., 2015). It maximises a firm's ability to compete in global markets and survive the emergence of new 

competitors (Cefis and Marsili, 2006). Recently, technologies based on Artificial Intelligence (AI) have become 

increasingly prevalent. In this context, AI innovation has emerged as a strategic factor in enhancing firm 

productivity and promoting firm competitiveness and development (Damioli et al., 2021; da Silva Marioni et 

al., 2024). Accordingly, AI innovation has been positioned at the heart of strategic discussions on the industrial 

policies of European firms (European Commission, 2020). 

Recent policy initiatives have emphasised the need for a coordinated European strategy on AI, calling for 

substantial public and private sector investment, stronger EU-wide governance, and a fully integrated digital 

single market. In this regard, Draghi (2024) outlines a possible strategy to close the innovation gap in a recent 

report on European competitiveness. It suggests that Europe vertically integrate AI technologies in key 

industrial sectors such as automotive, robotics, and pharmaceuticals. According to the report, targeted 

technological spending and cross-border collaborations are key factors in closing the innovation gap and 

improving Europe's AI capability. Therefore, to provide insights for designing effective support mechanisms 

and investment strategies across European industries, it is necessary to identify specific firms' characteristics 

that influence businesses' ability and willingness to achieve AI innovation. Although there has been a rapid 

growth in scholarly interest in AI, only a few contributions have explored which types of firms are most likely 

to engage in AI-related innovation (Martinelli et al., 2021; Igna and Venturini, 2023). Understanding the factors 

that enable—or hinder—AI innovation, such as firm size, sector, accumulation of digital human capital, prior 

experience with 4IR technologies, access to collaboration networks, and public support is crucial. First, it helps 

identify the barriers that prevent SMEs and "laggard" firms from adopting AI, thereby limiting the diffusion of 

productivity gains across the broader economy. Second, it provides actionable insights for policymakers on 

which levers to activate to foster a more inclusive and widespread adoption of AI technologies.  

In contrast, most recent studies have examined the economic impact of AI in terms of productivity (Czarnitzki 

et al., 2023; da Silva Marioni et al., 2024), the labour market (Acemoglu and Restrepo, 2020; Damioli et al., 

2023), and wage and income inequalities (Acemoglu, 2025). Previous evidence shows that a few large firms 

are responsible for a high proportion of patenting activity, primarily in the Information and Communication 

Technology (ICT) sector and clustered in a few tech hubs.  

Regarding prediction tasks,  growing literature explores machine learning (ML) to improve policy targeting 

and prediction. ML tools have been applied across diverse domains—including fiscal policy, poverty alleviation, 
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financial aid, credit access, and energy efficiency—offering more efficient and often more effective alternatives 

to traditional targeting methods. Studies have shown that ML can better identify beneficiaries in tax rebate 

programs (Andini et al., 2018), optimise residential energy retrofits (Christensen et al., 2024), and enhance the 

allocation of public credit guarantees (Andini et al., 2022). In development settings, ML has been used with 

mobile phone data to improve poverty targeting in Afghanistan (Aiken et al., 2023) and to assess the feasibility 

of predicting entrepreneurial success (McKenzie and Sansone, 2019). Work by Athey et al. (2025) illustrates 

the value of combining predictive and causal ML for targeting educational behavioural interventions. These 

contributions highlight the potential of ML to improve policy design and delivery, though issues of 

interpretability, fairness, and transparency remain central. Ludwig and Mullainathan (2024) emphasise the 

potential of ML for targeting and hypothesis generation. By uncovering patterns humans might overlook, ML 

can inspire new, interpretable research questions from complex data. These characteristics expand its role 

beyond prediction into the scientific discovery process. The field is expanding rapidly, with evidence 

supporting both the promise and limitations of ML as a tool for public policy.  

In this paper, we use ML to predict AI innovation at the firm level in a sample of European countries. To this 

end, we construct our dataset using ORBIS Intellectual Property (ORBIS-IP), a matched firm–patent database. 

We focus on active financial and non-financial firms headquartered in the EU-15 that filed at least one EPO 

patent in 2020. AI-innovating firms are identified by linking ORBIS-IP with the OECD REGPAT database, 

which provides granular data on global patent applications.  

We perform a classification analysis using state-of-the-art ML algorithms (i.e., LASSO, Elastic net, Random 

Forest, Gradient Boosting Machine). We exploit a high-dimensional vector of potential predictors, their lagged 

values, and high-order nonlinearities among predictors to maximise the capability of our ML models to predict 

our target variable accurately. Unlike previous evidence based on standard regression models, which are 

forced to decide ex-ante a limited number of predictors, our approach can capture relevant predictors without 

assuming a linear functional form and limiting our analysis to predictors observed at a given time. Therefore, 

our data-driven approach helps identify relevant predictors of AI innovation that have not been analysed in 

previous studies from a theoretical or empirical point of view and by capturing potential nonlinearities among 

predictors. 

Our results show that ML models—particularly Random Forest—outperform traditional econometric 

approaches in predicting AI innovation, achieving high sensitivity and balanced accuracy despite the rarity of 

AI patenting in the sample. Relevant predictors of AI patenting are ICT specialisation, prior patent activity, 
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firm size, technological specialisation, and several relevant interaction effects. These findings underscore the 

complexity and heterogeneity of AI adoption processes and the value of data-driven approaches.  

The remainder of the paper is organised as follows: Section 2 reviews the relevant literature; Section 3 presents 

the data and methodological framework; Section 4 provides descriptive evidence; Section 5 discusses the 

empirical results; and Section 6 concludes the paper with policy implications and directions for future research. 

 

2. Literature review 

 
The literature has mainly focused on AI's impact on productivity, labour demand, income distribution, and the 

heterogeneous diffusion of technology, given the structural differences in capabilities, infrastructure, and 

institutions across sectors and regions (Guarascio et al., 2025). 

Initial studies examined the effects of changes in the capital-to-labour ratio caused by automation and robotics 

on the labour market. These studies demonstrate that mid-skilled workers performing manual, highly 

routinised tasks are particularly vulnerable to displacement by industrial robots (Autor et al., 2003; Acemoglu 

& Restrepo, 2020). This phenomenon is generally characterised as the labour-saving effect of automation. On 

the other hand, Damioli et al. (2023) investigated the labour-friendly nature of AI technologies, supporting the 

hypothesis that the employment impact of AI is larger and more significant than the job creation effect of other 

innovative activities. Regarding 'AI exposure' (Felten et al., 2018), some studies have found that employment 

shares tend to increase in AI-exposed occupations in Europe, particularly those characterised by a relatively 

high proportion of younger and skilled workers (Albanesi et al., 2023). However, the effect varies 

geographically (Guarascio and Reljic, 2024). 

Although estimates of the contribution of AI to aggregate productivity remain uncertain (Acemoglu, 2025), a 

growing body of patent-based evidence documents a strong link between AI innovation and productivity at 

the firm level. In the United States, for example, Alderucci et al. (2020) demonstrate that companies that patent 

AI technologies are more productive than their non-AI counterparts. Yang (2022) analysed 600 Taiwanese 

electronics firms from 2002 to 2018, finding that a 10 per cent rise in AI patents boosts overall productivity by 

about 5 per cent. Using a panel of worldwide firms from 2000 to 2016, Damioli et al. (2021) found that patenting 

in AI was associated with a 3 per cent increase in labour productivity, with the gains particularly pronounced 

among SMEs and service sector companies. Furthermore, Benassi et al. (2022) demonstrate that accumulating 

Fourth Industrial Revolution (4IR) knowledge increases output per worker and multifactor productivity. The 

largest effects stem from AI, wireless technologies, cognitive computing, and big data analytics, especially for 
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firms with prior experience in pre-4IR domains or those that adopted these technologies early. Recently, da 

Silva Marioni et al. (2024) used a difference-in-differences quasi-experimental approach to estimate the causal 

effect of AI innovation on the productivity of 15 European countries between 2011 and 2019. They found that 

company productivity increased by an average of 6–11%, with the greatest gains made by technologically 

backward firms. 

Given the evidence above showing that adopting AI delivers significant productivity gains, it is important to 

identify the characteristics of firms more likely to innovate in this field. As highlighted by the existing literature, 

most AI patents are held by a small group of large, established companies, mainly ICT firms clustered in just a 

few global tech hubs. Dernis et al. (2019) highlight that 75% of AI patents worldwide are filed by top R&D 

performers, with software companies and IT service providers now surpassing traditional high-tech 

manufacturers in AI-related innovations. Furthermore, Klinger et al. (2020) find that AI-related scientific 

publications are dominated by large high-tech firms exhibiting decreasing diversification in their product 

portfolios. This pattern suggests that AI development is becoming more concentrated, potentially limiting the 

diffusion of AI capabilities across industries and restricting the ability of smaller firms to enter the market (Fanti 

et al., 2022). More recently, Igna and Venturini (2023) show that the probability of inventing AI is systematically 

higher for major innovators already active in fields such as ICT. 

Regarding patent productivity, AI innovation presents strong dynamic returns from the knowledge earlier 

developed in network and communication technologies. Cumulative knowledge dynamics also emerge in 

territorial analyses. For example, Xiao and Boschma (2023) examined AI innovation capacity across 233 

European regions from 1994 to 2017. They found that regions with the highest shares of AI patents already 

possessed a strong ICT knowledge base, providing evidence of path-dependent diffusion. These findings are 

consistent with those of Buarque et al. (2020), who demonstrated that regions most successful in AI were 

precisely those in which AI-related technologies were deeply embedded within the local knowledge space. 

Therefore, knowledge concentration concerns not only the industrial sector but also the specific local 

characteristics of the area where a firm is based. 

Differently from the existing literature (Igna and Venturini, 2023) that relies on parametric models and focuses 

on the role of past ICT capabilities and firm-level knowledge accumulation as key drivers of AI patent 

productivity, our approach adopts a high-dimensional, non-parametric ML framework that allows us to 

uncover complex, nonlinear interactions among a much broader set of predictors, without imposing strong a 

priori assumptions on the functional form of the relationships. Unlike traditional econometric techniques such 

as Probit models—which require a predefined and limited set of covariates and assume linearity and additivity 
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in the effects—ML algorithms can flexibly capture intricate dependencies and interactions across hundreds of 

features, including higher-order and interaction terms. This flexibility improves predictive performance, 

especially in contexts such as AI innovation, where relationships are expected to be highly heterogeneous and 

nonlinear. Moreover, ML tools allow us to identify novel, previously overlooked predictors and interaction 

effects that would be difficult to detect through conventional estimation approaches. 

 

3. Data and Methodology 

 
3.1 Data 

The dataset is constructed starting from ORBIS Intellectual Property (ORBIS-IP), Bureau van Dijk’s new 

matched patent–firm database that links granular patent records with firm-level information for around 110 

million companies worldwide (Benassi et al., 2022). From this dataset, following Igna and Venturini (2023), we 

selected all the financial and non-financial active corporations that filed at least one patent application with 

the European Patent Office (EPO) in 2020 (priority year).1 All selected firms are headquartered in the EU-15 

countries (i.e., Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the 

Netherlands, Portugal, Spain, Sweden and the United Kingdom). We remove all observations whose ORBIS 

consolidation flag indicates that reliable financial statements are unavailable. Concretely, we drop firms with 

consolidation codes equal to “NF” (no financials) and “LF” (limited financials, i.e. only sales and total assets 

are reported), as well as those for which the code is missing. These entities lack the balance-sheet variables 

required for our analysis; retaining them would introduce measurement error without adding usable 

information. Moreover, we remove firms for which the necessary balance sheet information for our analysis is 

missing to obtain a final sample of 3,243 firms. 

We classify AI-innovating and non-AI-innovating firms by linking ORBIS-IP to the microdata from the OECD 

REGPAT database (January 2024 edition). The latter, which contains information on individual patent 

applications worldwide, collects data from the European Patent Office (EPO) and the Patent Cooperation 

Treaty (PCT). Matching is performed on the publication numbers of applications filed at the EPO by European 

applicants. The literature recognises two principal approaches for identifying AI patents. The first uses the 

EPO taxonomy (EPO 2017, Annex 1), which aggregates Cooperative Patent Classification (CPC) codes spanning 

the broader 4IR technology space (Benassi et al., 2022; Igna and Venturini, 2023). This scheme may over-count 

AI patents because 4IR encompasses many fields beyond AI. The second is the PATENTSCOPE Artificial 

 
1 We selected 2020 for the analysis because patent data is generally recorded with three to four years of delay, and our most recent 
database update is in 2024. 
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Intelligence Index developed by the World Intellectual Property Organization (WIPO, 2019), which provides 

key phrases, IPC (International Patent Classification), and CPC codes used for capturing core AI technologies 

(Damioli et al., 2021; da Silva Marioni et al., 2024; Kopka and Fornahl, 2024). The index is divided into two 

segments. In our paper, we follow the approach of Xiao and Boschma (2023) and use only the CPC codes from 

the first segment of the WIPO classification.2 Starting from this information, we construct a dummy variable 

AI that equals one if the firm filed at least one patent application containing an AI-related CPC code in 2020 

and 0 otherwise.  

We employ a broad set of predictors related to sectoral affiliation, accumulated technological capabilities, 

structural characteristics, and balance sheet indicators to capture the main factors influencing a firm's ability 

to innovate in AI.  

A detailed description of predictors is provided in Table 1. The first group of predictors concerns the firms’ 

innovative and technological capabilities. We include the yearly number of patents filed by each firm 

(m_nrpat), regardless of whether they are related to AI, to capture their general propensity to innovate. 

Building on this, we also consider the degree of technological specialisation using the Herfindahl-Hirschman 

Index (m_HHI). This index, which ranges from 0 to 1 (with 1 indicating maximum concentration), is calculated 

based on the distribution of patents across the main CPC macro-categories (A to Y), representing different 

technological domains. 

Furthermore, we include the dummy variable ICT that takes the value 1 when the firm filed at least one patent 

application in the fields of ICT between 2016 and 2019. To identify patent applications related to ICT, we rely 

on the J-tag classification system proposed by Inaba and Squicciarini (2017). As this taxonomy includes 

categories overlapping with AI codes, we exclude these codes from the broader set of ICT-related codes (Igna 

and Venturini, 2023).  

Recent work highlights the growing complementarity between digital and green technologies—the so-called 

twin transition (Diodato et al., 2023; Montresor and Vezzani, 2023). New digital technologies can further 

enhance the effectiveness of green technologies, thereby increasing their overall environmental benefits (see 

Biggi et al., 2025). Companies already working on green solutions are likely to adopt AI as well. To embed this 

perspective, we add a predictor that can capture the propensity of green innovation. Specifically, we create the 

dummy green that takes the value one if the firm filed at least one patent in the green area between 2016 and 

 
2 We verify the strength of our results by employing the EPO 4IR taxonomy as a robustness check. 
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2019. Following Fabrizi et al. (2025), we apply the "Y02/Y04S tagging scheme" developed by the EPO to 

identify the green applications.  

The second set of predictors describes each firm’s structural characteristics. We also add the industry affiliation 

by introducing a set of dummies (nace_) that assign every firm to one of the different NACE Rev. 2 sections 

(agriculture, manufacturing, construction, information and communication, and so on).3 Next, we introduce a 

dummy variable group to identify whether a company belongs to a wider corporate group. Group affiliation 

can provide access to shared R&D facilities, internal capital markets, and cross-firm knowledge flows, thereby 

increasing innovative capability. Finally, we proxy firm size with four employment-class dummies that follow 

the Eurostat definition: empl_1 flags micro-enterprises with up to 9 employees; empl_2 covers small firms with 

10–49 employees; empl_3 captures medium-sized firms with 50–249 employees; and empl_4 identifies large 

enterprises with 250 or more employees. 

The last set of predictors accounts for the balance sheet indicators. First, we consider the size of a firm’s balance 

sheet with total assets (m_tot_asset) and capture the flow dimension of its activity with operating revenues or 

turnover (m_op_rev). Intangible assets (m_intangible) are a stock measure for past innovation spending and 

accumulated knowledge capital. At the same time, the profitability enters through the EBITDA margin 

(m_EBITDA), signalling the cash a firm can generate internally to finance innovative projects. We also include 

measures relating to financial position, such as the stock of long-term debt (m_Longdebt) and the current ratio 

(m_currentr), which compares current assets to current liabilities and indicates a firm’s ability to cover its short-

term obligations. Finally, we account for market power measured by a proxy of the Lerner index (lerner_index), 

defined as operating profit over operating revenue, which captures the extent to which firms can set price 

above cost (Aghion et al., 2005). 

 

 

 

 

 

 

 

 
3 Table A1 of the Appendix provides detailed information about specific NACE categories included in the vector of predictors. 



© F. Bloise, C. Fiorelli, V. Meliciani             LEAP  Working Paper 4/2025                   June 25, 2025 
 
 

 
 

9 

Table 1: Variable description and sources. 

Variable Description Source 

AI 
Dummy: 1 if the firm filed at least one patent application 
containing an AI-related CPC code in 2020; 0 otherwise 

OECD REGPAT database; 
own elaboration 

ICT 
Dummy: 1 if the firm filed at least one patent application 
ICT between 2016 and 2019; 0 otherwise 

OECD REGPAT database; 
own elaboration 

m_HHI 
Herfindahl-Hirschman Index on technological 
specialisation; average between 2016 and 2019 

OECD REGPAT database; 
own elaboration 

m_nrpat 
Number of patents filed by each firm; average between 
2016 and 2019 

ORBIS-IP 

green 
Dummy: 1 if the firm filed at least one patent application 
in the green area between 2016 and 2019; 0 otherwise 

OECD REGPAT database; 
own elaboration 

nace_ Industry affiliation, NACE Rev. 2 sections; dummies 
ORBIS-IP database; own 
elaboration 

group Belonging to a wider corporate group, dummy 
ORBIS-IP database; own 
elaboration 

empl_ Firm size with four employment classes; dummies 
ORBIS-IP database; own 
elaboration 

m_tot_asset Total assets; average between 2016 and 2019 ORBIS-IP database 

m_op_rev 
Operating revenues (turnover); average between 2016 
and 2019 

ORBIS-IP database 

m_intangible Intangible assets; average between 2016 and 2019 ORBIS-IP database 
m_EBITDA EBITDA margin; average between 2016 and 2019 ORBIS-IP database 
m_Longdebt Long-term debt; stock; average between 2016 and 2019 ORBIS-IP database 
m_currentr Current ratio; average between 2016 and 2019 ORBIS-IP database 

lerner_index 
Operating profit over operating revenue; average 
between 2016 and 2019 

ORBIS-IP database; own 
elaboration 

 

3.2 Methodology 

To predict firm-level adoption of artificial intelligence (AI) technologies, we model the probability that a given 

firm files at least one AI-related patent in 2020. The dependent variable is defined as: 

 

𝐴𝐼#,%&%& 	= 	𝑓(𝑋#,%&%&,-) 	+	𝜀#,%&%&,                                   (1) 

 

where 𝐴𝐼#,%&%& is a binary indicator equal to 1 if firm x files an AI patent in 2020 and 0 otherwise. The function 

f(.) denotes an unknown relationship between AI patenting and firm-level characteristics observed between 

2016 and 2019, and εₓ is an idiosyncratic error term. 

The dependent variable's binary nature justifies comparing different classification algorithms. We estimate a 

baseline Probit model, followed by machine learning (ML) methods, including LASSO, Elastic Net, and 



© F. Bloise, C. Fiorelli, V. Meliciani             LEAP  Working Paper 4/2025                   June 25, 2025 
 
 

 
 

10 

Random Forest. LASSO and Elastic Net are regularisation-based estimators allowing variable selection and 

shrinkage, while Random Forest is a non-parametric ensemble learning technique. 

To improve flexibility and capture nonlinearities, we expand the feature space to include squared terms and 

all possible two-way interactions for LASSO and Elastic Net, resulting in 423 candidate predictors. Random 

Forest automatically incorporates high-order nonlinearities among predictors. Mullainathan and Spiess (2017) 

suggested to adopt a three-step approach. First, we randomly divide our sample into a training sample to 

calibrate and estimate our algorithms and a test sample. Second, we exploit the training sample to calibrate 

our ML algorithms using 5-fold cross-validation. Third, we estimate our calibrated model to obtain our-of-

sample scores in the test sample and identify relevant predictors of AI innovation. 

We rely on two key performance metrics, sensitivity (recall) and balanced accuracy, to assess prediction quality. 

These are computed as follows: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 = 	𝑇𝑃	/	(𝑇𝑃	 + 	𝐹𝑁)                                                                (2)	

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 + 	𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)	/	2,                       (3)	

 

where TP is the number of true positives, FN is the number of false negatives, and specificity is the true negative 

rate. To mitigate overfitting and underfitting, we apply 5-fold cross-validation.4 Each model is calibrated on a 

training set (80% of the data) and evaluated on a hold-out set (20%) to obtain unbiased performance 

estimates. 

 

4. Descriptive Evidence 

 
The sample consists of 3,243 firms in EU-15 countries that filed at least one patent at the EPO in 2020. Only 

3.7% are identified as AI innovators. This low incidence underscores the relevance of using high-sensitivity 

classification models to identify rare but significant cases of technological leadership. 

The average firm in the dataset exhibits high heterogeneity in size, sector, and technological capabilities. The 

mean ICT specialisation score is 0.101, with a standard deviation of 0.302, suggesting that only a small subset 

 
4 LASSO and Elastic Net are calibrated by testing 50 different regularisation parameter (lambda) values. For Elastic Net, the tuning 
also included three different values of the mixing parameter (alpha). Random Forest is calibrated after a variable pre-selection step 
based on the non-zero coefficients identified by LASSO. The calibration considers different values for the proportion of features used 
at each split and the number of splits, with the number of trees fixed at 500. 



© F. Bloise, C. Fiorelli, V. Meliciani             LEAP  Working Paper 4/2025                   June 25, 2025 
 
 

 
 

11 

of firms maintains a strong ICT orientation. Similarly, the average firm has 120 patents (mean of m_nrpat), but 

this indicator has high dispersion (standard deviation equals 643), implying a skewed distribution. Notably, 

32% of firms are active in green innovation, and 23% belong to corporate groups, signalling heterogeneity in 

firm structure and innovation strategy. The sectoral distribution shows that over 66% of firms are in the 

manufacturing sector (nace_3), reflecting the dominant industrial cluster in the sample. The next most 

prevalent sectors are professional, scientific and technical activities (nace_12), followed by transport and 

storage (nace_8). Finally, firm size, proxied by employment class, shows that nearly half (48.9%) of the firms 

belong to the largest class (empl_4), while only 9.1% are micro-enterprises (empl_1). These results confirm that 

larger firms are overrepresented among patent filers, which aligns with prior literature on the innovation-size 

nexus. 

Table 2: Descriptive evidence 

Variable Mean Std. Dev. 
AI 0.037 0.188 
ICT 0.101 0.302 
green 0.320 0.467 
m_nrpat 120.203 643.330 
nace_1 0.002 0.046 
nace_2 0.004 0.061 
nace_3 0.660 0.474 
nace_4 0.007 0.086 
nace_5 0.003 0.053 
nace_6 0.003 0.051 
nace_7 0.063 0.243 
nace_8 0.063 0.242 
nace_9 0.033 0.179 
nace_10 0.003 0.053 
nace_11 0.002 0.046 
nace_12 0.163 0.370 
nace_13 0.015 0.122 
nace_14 0.000 0.018 
nace_15 0.003 0.053 
nace_16 0.009 0.096 
nace_17 0.000 0.018 
nace_18 0.003 0.053 
empl_1 0.091 0.288 
empl_2 0.148 0.355 
empl_3 0.272 0.445 
empl_4 0.489 0.500 
Obs. 3,243 3,243 

Notes: Authors’ elaborations.  
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5. Results 

This section presents the empirical findings from the estimation of traditional econometric and ML models 

(Table 3). Probit achieves a balanced accuracy of 0.523 and a sensitivity of just 0.083, indicating a minimal 

ability to identify actual AI innovators. These results highlight the challenge of using traditional models in the 

context of rare events and high-dimensional predictors. 

In contrast, the LASSO and Elastic Net models significantly outperform the Probit specification. Both yield a 

sensitivity of 0.750 and a balanced accuracy of 0.812. This improvement can be attributed to their ability to 

penalise irrelevant predictors and select relevant predictors, including nonlinear and interaction effects. 

However, the best-performing algorithm is Random Forest, which achieves a sensitivity of 0.815 and a 

balanced accuracy of 0.854. These gains highlight the superiority of nonparametric models in capturing 

complex, nonlinear relationships between firm characteristics and AI adoption. 

Table 3: predictive performance across models 

Model Sensitivity Balanced Accuracy 

Probit 0.083 0.523 

LASSO 0.750 0.812 

Elastic Net 0.750 0.812 

Random Forest 0.815 0.854 

Notes: Authors’ elaborations. 
 
 
Beyond prediction, we examine variable importance using the Random Forest model. Importance is assessed 

using the Gini impurity reduction metric and permutation-based performance loss.5 Both approaches 

converge on a consistent set of top predictors: ICT specialisation, patent stock (m_nrpat), firm size (empl_4), 

and technological specialisation (m_HHI). The stock of prior patents and a firm's intangible capital gives rise 

to strong dynamic increasing returns (learning-by-doing) and powerful knowledge complementarities. 

Companies with codified intellectual property and tacit assets (software routines, brands, organisational know-

how) enjoy a cost advantage in subsequent AI invention because they can recombine these capabilities at a 

lower marginal cost. As underlined by Igna and Venturini (2023), network effects amplify these cumulative 

 
5Feature importance in Random Forest is assessed using two methods. The first is the Mean Decrease in Impurity (Gini importance), 
which measures how much each variable contributes to reducing node impurity across all trees in the forest. The second is 
permutation importance, which evaluates the change in model performance when the values of a single feature are randomly 
permuted—thus breaking its relationship with the outcome—while keeping all other features unchanged. Permutation importance 
has been computed over 50 random replications to ensure robustness and account for variability due to random shuffling. 
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mechanisms within ICT, boosting the probability of AI patenting and reinforcing path dependence. 

Technological specialisation matters as well. 

 

 

Figure 1: Feature importance from Random Forest 

 
Notes: Authors’ elaborations  
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Figure 2: Permutation importance from Random Forest 

 

Notes: Authors’ elaborations  
 

To enhance interpretability, we also extract standardised coefficients from the LASSO model. Only predictors 

with coefficients greater than 0.05 in absolute value are retained in Table 4. The leading variable, ICT, shows 

a coefficient of 0.376, confirming its strong association with AI patenting. Other influential features include 

interaction terms between employment class and sector (e.g., Xempl_4ICT = 0.200) and between knowledge 

accumulation and sector (e.g., Xm_intangiblenace_10 = 0.075). Regarding innovation capabilities in specific 

sectors, we find strong evidence of the influence of green patenting knowledge on AI innovation. A positive 

coefficient for green × nace_3 (0.126) indicates that manufacturing firms already innovating in environmental 

technologies are more likely to innovate in AI, underscoring the “twin transition” in which digital and green 

advances reinforce one another. Scale also matters: the large-firm dummy interacted not only with ICT 

innovation but also with green innovation, which is strongly positive.  
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Table 4: selected coefficients from LASSO 

Variable Estimated coefficient 
ICT 0.376 
Xempl_4ICT 0.200 
Xm_HHInace_9 0.141 
Xgreennace_3 0.126 
nace_9 0.122 
Xm_nrpatgreen 0.096 
Xempl_4nace_16 0.087 
Xm_intangiblegreen 0.083 
Xempl_2nace_13 0.076 
Xm_intangiblenace_10 0.075 
XICTnace_12 0.070 
Xm_intangiblenace_15 0.069 
Xempl_1nace_1 0.067 
Xempl_4green 0.065 
Xnrgroupnace_16 0.065 
m_nrpat 0.065 
Xm_nrpatnace_4 0.062 
Xempl_2nace_9 0.059 
Xempl_4m_nrpat 0.052 
sqrm_HHI -0.074 
m_HHI -0.102 

Notes: All variables with the prefix ‘X” are interaction terms. A variable whose name starts with ‘sqr’ is the square of a predictor. 
 
 

Moreover, m_HHI and its squared value exhibit negative coefficients, suggesting a nonlinear effect of 

technological specialisation on AI innovation propensity. This result implies that AI invention thrives on a 

diversified mix of heterogeneous knowledge and competencies (Igna and Venturini, 2023). However, the 

picture changes when specialisation interacts with a specific sector that accounts for the information and 

communication (i.e., Xm_HHInace_9= 0.141). Specialised firms operating within information and 

communication technologies enjoy a markedly higher probability of innovating in AI. By accommodating such 

nonlinearities and interaction effects, machine-learning estimators reveal a far richer mapping from firms' 

knowledge profiles to AI invention than traditional linear models could ever detect. At the opposite end of the 

size spectrum, empl_1 × nace_1 (0.067) reveals that even agricultural micro-enterprises have above-average 

odds of AI patenting. This result aligns with the recent surge in 'precision farming' and 'digital farming' 

solutions, such as UAV-based multispectral imaging for detecting crop stress, convolutional neural network 
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classifiers for recognising weeds, and reinforcement learning-driven variable-rate irrigation systems. These 

solutions are employed in agriculture to increase production efficiency. 

Overall, these results demonstrate the added value of ML methods in uncovering complex patterns that would 

be difficult to detect using traditional techniques. They also confirm the relevance of firm-level heterogeneity, 

sectoral context, and historical innovation capacity in shaping AI adoption. 

 

6. Conclusions and Policy Suggestions 

 
This paper has demonstrated that ML algorithms can effectively predict AI innovation at the firm level using 

a rich set of balance sheets and sectoral and innovation-related indicators. Based on the presence of AI patent 

applications in 2020, the classification task posed significant challenges due to class imbalance and 

nonlinearity in firm characteristics. Traditional econometric models, such as Probit, failed to capture these 

complexities and yielded very low predictive power. 

Conversely, ML techniques such as Random Forest and regularisation-based models, are substantially more 

accurate. Random Forest achieved the highest sensitivity and balanced accuracy, while LASSO provided 

insight into the magnitude and direction of key predictors. These findings confirm that ML methods are well 

suited to identifying rare yet economically significant innovation patterns across firms. 

Importantly, this study highlights superior predictive performance and sheds light on the key drivers of AI 

innovation. ICT specialisation is the most consistent determinant, reflecting the need for digital infrastructure 

and absorptive capacity. Furthermore, the presence of significant interaction terms indicates that the impact 

of a predictor frequently hinges on the levels of the others. 

From a policy perspective, these results offer important suggestions. Firstly, they support the use of ML in 

designing more targeted innovation policies. By identifying firms with a high probability of adopting AI, 

policymakers can allocate resources more effectively and provide targeted support in the form of R&D grants 

and tax credits. This approach ensures that public investments focus on firms with strong transformative 

potential. 

Secondly, insights from LASSO coefficients enable policymakers to understand who innovates and why. For 

example, the significant involvement of ICT-intensive or green-intensive sectors highlights the importance of 

dynamic returns of knowledge. At the same time, the interaction between firm size and innovation indicators 

highlights the need for differentiated strategies for SMEs versus large enterprises. 
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Thirdly, the results suggest that AI innovation remains highly concentrated and path-dependent, which echoes 

previous findings on technological lock-ins. Supporting the diffusion of AI therefore requires addressing the 

systemic barriers — such as skill gaps, financing constraints and network externalities — that hinder late 

adopters. 

Future research should build on this work in three directions. First, alternative patent taxonomies, such as the 

EPO 2017 classification, could be employed to validate the robustness of the model. Second, restricting the 

analysis to firms with no AI patenting history from 2016 to 2019 would help identify predictors of first-time 

adoption. Third, causal inference techniques, including Double Machine Learning (DML), could be used to 

estimate the impact of public interventions.  

This paper advances the methodological and substantive understanding of AI innovation in Europe. It shows 

that ML methods are robust classifiers and valuable tools for revealing the empirical structure of innovation 

adoption. Using these methods could greatly improve researchers' and policymakers' ability to predict, support 

and expand the next wave of technological change. 
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Appendix 

 

Table A1: Description of the NACE Rev. 2 sections 

Variable Name Description 

nace_1 Agriculture, forestry and fishing 
nace_2 Mining and quarrying 
nace_3 Manufacturing 
nace_4 Electricity, gas, steam and air conditioning supply 
nace_5 Water supply, sewerage, waste management 
nace_6 Construction 
nace_7 Wholesale and retail trade; repair of motor vehicles and motorcycles 
nace_8 Transportation and storage 
nace_9 Information and communication 
nace_10 Financial and insurance activities 
nace_11 Real estate activities 
nace_12 Professional, scientific and technical activities 
nace_13 Administrative and support service activities 
nace_14 Public administration and defence; compulsory social security 
nace_15 Education 
nace_16 Human health and social work activities 
nace_17 Arts, entertainment and recreation 
nace_18 Other service activities 

 


