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Background



Diffusion of Green Technologies

• Unprecedented challenges related to climate change.

• Accelerating the diffusion of Green Technologies (GTs) to mitigate GHG
emissions (OECD, 2009; Hasna et al., 2023), yet multiple barriers (e.g., Rennings, 2000;

Ghisetti and Quatraro, 2017).

• Tech. complexity may represent a barrier.

• GTs are more complex than conventional techs ⇒ require recombining
numerous, distant, and cognitively diverse knowledge domains (Barbieri et al.,

2016; Fusillo, 2019); tech. complexity increases over time (Broekel, 2019).

• Most widely validated complexity framework:
Economic Complexity (EC) ⇒ Captures how well a location combines
diverse capabilities to generate unique and complex technologies
(Hidalgo and Hausmann, 2009; Tacchella et al., 2012).
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Complexity & Diffusion

• The spatial dimension of the tech. diffusion-complexity relationship has been
investigated...

1. Concentration in productive places (e.g., Pintar and Scherngell, 2022; Mewes and

Broekel, 2022), with European regions as illustrative cases (Antonelli, 2022; Pinheiro

et al., 2022).

2. Larger knowledge spillovers (e.g., Dechezlepretre et al., 2017; Barbieri et al., 2020).

• ... But the temporal dimension remains largely unexplored.
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Complexity & Diffusion

• The temporality of tech. diffusion can be investigated in two ways:

1. Introduction phase ⇒ from global emergence to locational introduction
(Li et al., 2021, 2023).

2. Trajectory phases ⇒ from locational introduction to key milestones along the
trajectory curve: take-off, inflection, and saturation
(Andersen, 1999; Bento et al., 2018; Cherp et al., 2021).

• Recent evidence shows a longer time to take-off for complex novel techs (Pezzoni et al., 2022).
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Motivations &
Hypotheses



Motivation

• Does complexity ⇒ greater sustainability? Consensus is lacking, but several
encouraging empirical findings:

1. Economically (e.g., Hidalgo and Hausmann, 2009; Mewes and Broekel, 2022)

2. Socially (e.g., Hartmann et al., 2017; Sbardella et al., 2017)

3. Environmentally (e.g., Mealy and Teytelboym, 2022; Romero and Gramkow, 2021)

• Limited research addresses the temporality of GTs diffusion and its
connection to complexity, despite existing research perspectives.

• The complexity paradigm holds potential for understanding challenges in
accelerating GTs diffusion.
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Research Question & Hypotheses

• One of the key questions is: To what extent does technological complexity
impact the diffusion of GTs across European countries?

• Dependent variables: length of (1) the introduction phase, and
(2) the formative phase (up to take-off).

• Independent variables: technological complexity, and environmental policy
stringency.

• Hypothesis 1: Technological complexity (+) associated with the length of
the diffusion of GTs.

• Hypothesis 2: National environmental policy stringency (-) mitigates the
(+) effect of technological complexity on the length of the diffusion of GTs.
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Methodology



Patent data

• Patents reliably measure GTs (Barbieri et al., 2016).

• Unit of analysis: Country/GT pair (EU-27, the UK, Norway and Switzerland; 43 GTs)

Patent selection ⇒ DOCDB Patent family (PATSTAT):

1. Contains at least one application’s CPC code aligned to a Green class
(i.e., within Y02 or Y04S) (see Veefkind et al., 2012).

2. Filed at the European Patent Office (ensures patent quality & homogeneity).

3. Priority date between 1979-2017 (before truncation).

4. Country identified by inventor’s address (full counting).

• Technology:

• At the six-digit level; e.g., ’Y02B20’ corresponds to energy-efficient lighting.

• Minimum of 500 patents per tech. globally (between 1979 and 2017) ⇒ 43 GTs
retained.
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Complexity Measure (1)

• Complexity-Fitness Method (CFM) (Tacchella et al., 2012) is a widely adopted
and robust measure of EC (e.g., Cristelli et al., 2013; de Cunzo et al., 2022; Sbardella

et al., 2018; Napolitano et al., 2022).

• Complexity is measured using an RTA matrix on global patent data (Mc,k,t ),
capturing national (c) specialization in technology (k ).

RTAc,k,t =
POc,k,t/

∑
k POc,k,t∑

c POc,k,t/
∑

c,k POc,k,t
Mc,k,t =

{
0 if RTAc,k,t ≤ 1

1 if RTAc,k,t > 1

• Mc,k,t = 0/1: no specialization/specialization in a technology field given the
global technological landscape.

• Binary RTA is preferred, continuous values tend to be unstable and noisy
(e.g., Balland et al., 2019).
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Complexity Measure (2)
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Figure 1: Matrix example using RTA, selection of European countries and GTs
(EPO patents, 2015-2017 averaged window)
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Complexity Measure (3)

• National fitness (Fc) and technology sophistication (Qk ) are iteratively
computed and updated using the following equations (Tacchella et al., 2012):

Q0
k,t = 1, F 0

c,t = 1 ∀ k ∈ K , c ∈ C

F̃ n
c,t =

K∑
k=1

Mc,k Q(n−1)
k,t

Q̃n
k,t =

 1∑R
c=1 Mc,k

(
1

Fn−1
c,t

)



F n

c,t =
F̃ n

c,t

⟨F̃ n
c,t⟩

Qn
k,t =

Q̃n
k,t

⟨Q̃n
k,t⟩

• A high national fitness (Fc,t ) indicates specialization in diverse and
sophisticated technologies (Qk,t ), while higher technology sophistication
(Qk,t ) reflects that only a few countries specialize in this technology, and
those countries have relatively high fitness (Fc,t ).
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Complexity Measure (4)

• Two adaptations to measure complexity per country-GT pair over time:

1. Relative complexity measure:

Fitness-Complexityk,i,t = Qk,t − Fi,t

How complex is a GT compared to the country’s average technological
capabilities?

2. Inverted ranking transformation (due to independent matrix computation)

(e.g., Caldarola et al., 2024)

A higher-ranked GT-European country pair reflects a greater complexity gap
between the GT and the country’s average technological capabilities compared
to other pairs.
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Diffusion Measure (1): Introduction phase

• Diffusion in terms of technological knowledge (via patents).

• A country introduced a GT as of its earliest priority date.

1. Global introduction period: 1979–2017 → Marks the global emergence of green patents.

2. European introduction period: 1995-2017 → Aligns with the start of available data on

national environmental policy stringency.

Figure 2: Illustrative example of the introduction phase - Reducing energy consumption
technologies in ICT (CPC: Y02D30)
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Diffusion Measure (2): Take-off phase

• Capturing the take-off milestone requires identifying tech. trajectories.

• Trajectory is measured by the cumulative count of patents over time for
each GT, starting from its national introduction.

• Similar measures exist (e.g., Verhoeven et al., 2016; Pezzoni et al., 2022, 2023), but
without associating trajectories to specific country–technology pairs.
E.g., the unit France/Y02T10 corresponds to the French green transport.

• Two main challenges:

1. Identifying distinct trajectory phases (i.e., formative, growth, and saturation phases).

2. Risk of underestimating take-off for emerging GTs.

13



Diffusion Measure (3): Take-off phase

• A logistic function fits the trajectory to its asymptotic limit—a widely accepted
S-shape in the diffusion literature (e.g., Cherp et al., 2021; Andersen, 1999)

(for evaluation of the fitting, click here).

• Take-off milestone corresponds to 10% of trajectory’s maturity

(e.g., Pezzoni et al., 2022).
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Environmental Policy Stringency Measure (1)

• The OECD’s Environmental Policy Stringency (EPS) index is defined ”as
a higher, explicit or implicit, cost of polluting or environmentally harmful
behavior” (Botta and Koźluk, 2014; Kruse et al., 2022).

• EPS index is a widely used measure (Galeotti et al., 2020), it ranges from 0 (not
stringent) to 6 (most stringent), is measured annually, and is disaggregated
into market-based, non-market-based, and technology support
instruments.
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Environmental Policy Stringency Measure (2)

• A relative EPS index is used instead of raw stringency to reflect each
European country’s position within the European context.
(for visualization of the differences, click here)

• Relative EPS index is defined as:

Relative EPSc,t,k =
EPSc,t,k

1
N

∑
j ̸=c EPSj,t,k

for all j where j ̸= c

• Leader and laggard countries are identified via yearly dummies by
instrument type:

Dummy EPSc,t,k =

1 if Relative EPSc,t,k > λ EPSEurope−c,t,k

0 if Relative EPSc,t,k ≤ λ EPSEurope−c,t,k

• Where λ is a threshold, taking two main values:

1. The average of other European countries,

2. The 90th percentile of the European distribution (with ̸= thresholds tested).

• To ensure stability, a value of one is assigned only if the condition is met in
the two prior years, for a given country and instrument type.
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Econometric estimates

• Introduction phase (cross-sectional data): Natural logarithm of the time lag (in
days) between global and national introduction of GTs ⇒ OLS estimation
with time fixed effects:

Log[Y]introduction
i,c = α+ β0 + θ1Log[Rank(Complexity)]c,i,t−1

+ β1(EPS>λEuropean-EPS)c(t − s) + β2Zc+

β3Xc(t − 1) +
∑

p

β4+pPeriodp + ϵi,c

• Take-off phase (longitudinal data): Percentage of estimated trajectory maturity
from national introduction of GTs to national take-off ⇒ panel fixed effects
estimation:

Yi,c(t)take−off = α+ β0 + θ1Log[Rank(Complexity)]c,i,t−1

+ β1(EPS>λEuropean-EPS)c(t − s) + β2Xc(t − 1)

+
∑

t

β3+t yeari,c,t + γi + δc + ϵi,c

Where:

Yi,c(t)take−off =

[
Maturity estimatedi,c(t)

Maturity estimatedTake-Off
i,c

]
× 100

17



Descriptive statistics



Figure 3: Comparison of GT and European country complexity rankings over time
(2000-2017)

Note: Colors correspond to the ranking in 2017 (darker tones indicating higher complexity)
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Descriptive statistics
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Figure 4: Estimated European trajectories for reducing energy consumption technologies
in ICT (Logistic function fitted on CPC: Y02D30; take-off defined at 10% of estimated maturity)
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Results - Introduction
phase



Results - Introduction phase

Dependent variable: log of time between global and national GT introduction

(1) (2) (3) (4) (5)

Log[Rank(Complexity)]c,i,t−1 0.033∗∗∗ 0.026∗∗∗ 0.023∗∗∗ 0.024∗∗∗ 0.017∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)
Log[GDP per capita]c,t−1 −0.017 −0.014 −0.014 0.0002

(0.012) (0.011) (0.011) (0.006)
Log[Trade Openness]c,t−1 0.030∗∗∗ 0.031∗∗∗ 0.031∗∗∗ 0.030∗∗∗

(0.011) (0.011) (0.011) (0.010)
Pioneerc,i −0.027∗∗∗ −0.027∗∗ −0.025∗∗∗

(0.010) (0.011) (0.009)
Borderc,i −0.016∗∗ −0.016∗∗ −0.014∗∗

(0.008) (0.008) (0.007)
Firms countc,i,t−1 0.0004 −0.0003

(0.002) (0.002)
Universities countc,i,t−1 0.009 0.009

(0.011) (0.012)
Log[Green diversification +1]c,t−1 −0.017∗∗

(0.008)

Time FE ✓ ✓ ✓ ✓ ✓

Observations 1,048 1,048 1,048 1,048 1,048
Adjusted R2 0.922 0.925 0.925 0.925 0.926

Note: SE are heteroskedasticity-robust and clustered at the country level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

• A one-percent increase in the complexity rank corresponds to a 1.7% increase in the time lag for

introducing GTs.
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Results - Introduction phase

Dependent variable: log of time between global and national GT introduction

Above European average stringency Strong sringency in Europe (90thpercentile)

EPS t-5 EPS t-4 EPS t-3 EPS t-2 EPS t-1 EPS t-5 EPS t-4 EPS t-3 EPS t-2 EPS t-1

Log[Rank(Complexity)]c,i,t−1× MBPc,t > µMBPEurope−c,t 0.0001 −0.002 −0.021 −0.022 −0.026∗∗

(0.030) (0.018) (0.013) (0.016) (0.010)
Log[Rank(Complexity)]c,i,t−1× MBPc,t > P90(MBPEurope−c,t) −0.067∗∗∗ −0.070∗∗∗ −0.121∗∗∗ −0.083∗∗∗ −0.056∗∗∗

(0.014) (0.013) (0.027) (0.019) (0.016)
Log[Rank(Complexity)]c,i,t−1× NMBPc,t > µNMBPEurope−c,t −0.069∗∗∗ −0.023 0.002 −0.018 −0.021∗

(0.023) (0.020) (0.010) (0.016) (0.012)
Log[Rank(Complexity)]c,i,t−1× NMBPc,t > P90(NMBPEurope−c,t) −0.008 0.025 −0.023∗∗∗ −0.025∗∗∗ −0.026∗∗∗

(0.030) (0.050) (0.007) (0.006) (0.006)
Log[Rank(Complexity)]c,i,t−1× TSc,t > µTSEurope−c,t 0.013 −0.004 0.020 −0.003 0.002

(0.027) (0.018) (0.015) (0.013) (0.011)
Log[Rank(Complexity)]c,i,t−1× TSc,t > P90(TSEurope−c,t) −0.042∗∗∗ −0.021 0.015 0.018 0.037∗∗

(0.014) (0.018) (0.011) (0.011) (0.016)
Log[Rank(Complexity)]c,i,t−1 0.018∗∗∗ 0.017∗∗ 0.011 0.031∗∗∗ 0.030∗∗∗ 0.016∗∗∗ 0.016∗∗ 0.031∗∗∗ 0.031∗∗∗ 0.030∗∗∗

(0.007) (0.007) (0.010) (0.008) (0.008) (0.006) (0.006) (0.006) (0.005) (0.005)
MBPc,t > µMBPEurope−c,t 0.009 0.020 0.129 0.122 0.155∗∗

(0.189) (0.118) (0.083) (0.106) (0.061)
MBPc,t > P90(MBPEurope−c,t)c,t 0.424∗∗∗ 0.446∗∗∗ 0.716∗∗∗ 0.457∗∗∗ 0.321∗∗∗

(0.091) (0.083) (0.164) (0.116) (0.105)
NMBPc,t > µNMBPEurope−c,t 0.482∗∗∗ 0.169 −0.033 0.115 0.138∗

(0.148) (0.132) (0.065) (0.102) (0.072)
NMBPc,t > P90(NMBPEurope−c,t) 0.138 −0.087 0.128∗∗∗ 0.132∗∗∗ 0.135∗∗∗

(0.177) (0.301) (0.038) (0.032) (0.033)
TSc,t > µTSEurope−c,t −0.071 0.041 −0.136 −0.007 −0.032

(0.173) (0.112) (0.089) (0.082) (0.067)
TSc,t > P90(TSEurope−c,t) 0.309∗∗∗ 0.155 −0.094 −0.096 −0.187∗∗

(0.083) (0.107) (0.060) (0.062) (0.081)

Control variables ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 908 908 908 908 908 908 908 908 908 908
Adjusted R2 0.916 0.913 0.911 0.912 0.910 0.915 0.913 0.912 0.911 0.911

Note: SE are heteroskedasticity-robust and clustered at the country level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

• E.g., a one-percent increase in the complexity rank, combined with market-based environmental

policy stringency that is (1) above the European average or (2) in the top 10% of European leaders,

is associated with a 2.6% and 5.6% reduction, respectively, in the time lag for introducing GTs.
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Results - Take-off phase



Results - Take-off phase

Dependent variable: percentage of trajectory maturity estimated until take-off (10%)

(1) (2) (3) (4) (5)

Log[Rank(Complexity)]c,i,t−1 −2.668 −3.203∗∗∗ −3.550∗∗∗ −3.505∗∗∗ −2.167∗∗∗

(1.994) (1.243) (1.247) (1.240) (0.826)
GDP per capitac,t−1 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ −0.0003

(0.001) (0.0005) (0.0005) (0.0002)
RTAc,t−1 0.052 −0.981∗ −0.976∗ 0.722∗∗

(0.410) (0.556) (0.565) (0.283)
Trade Opennessc,t−1 0.622∗∗∗ 0.606∗∗∗ 0.604∗∗∗ 0.087∗∗∗

(0.157) (0.158) (0.158) (0.026)
Firms countc,i,t−1 1.383∗∗∗ 1.382∗∗∗ 0.623∗∗∗

(0.274) (0.275) (0.124)
Universities countc,i,t−1 2.414∗∗∗ 2.434∗∗∗ 0.307

(0.502) (0.504) (0.279)
Green diversificationc,t−1 0.151 0.096

(0.163) (0.094)

Country FE ✓ ✓ ✓ ✓ ✓

Technology FE ✓ ✓ ✓ ✓ ✓

Year FE × × × × ✓

Observations 3,349 3,349 3,349 3,349 3,349
Adjusted R2 0.146 0.763 0.770 0.770 0.897

Note: SE are Driscoll-Kraay robust. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

• A one-percent increase in the complexity rank is associated with a 2.17% decrease in the

trajectory maturity needed for GTs to take off.
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Results - Take-off phase

Dependent variable: percentage of trajectory maturity estimated until take-off (10%)

Above European average stringency Strong sringency in Europe (90th percentile)

EPS t-5 EPS t-4 EPS t-3 EPS t-2 EPS t-1 EPS t-5 EPS t-4 EPS t-3 EPS t-2 EPS t-1

Log[Rank(Complexity)]c,i,t−1× MBPc,t > µMBPEurope-c,t 1.925∗∗ 0.954 −0.065 −0.261 −0.586
(0.785) (0.932) (0.802) (0.996) (1.012)

Log[Rank(Complexity)]c,i,t−1× MBPc,t > P90(MBPEurope-c,t) 11.627∗∗∗ 10.947∗∗∗ 10.614∗∗∗ 9.297∗∗∗ 5.223∗

(2.273) (1.957) (3.008) (3.508) (3.109)
Log[Rank(Complexity)]c,i,t−1× NMBPc,t > µNMBPEurope-c,t 0.074 0.487 1.334 4.717∗∗∗ 4.514∗∗

(0.453) (0.441) (1.351) (1.809) (1.795)
Log[Rank(Complexity)]c,i,t−1× NMBPc,t > P90(NMBPEurope-c,t) 1.459 2.480∗∗∗ 3.681∗∗∗ 3.474∗∗∗ 3.164∗∗∗

(0.969) (0.883) (0.614) (0.687) (0.768)
Log[Rank(Complexity)]c,i,t−1× TSc,t > µTSEurope-c,t −0.016 0.679 0.084 0.040 0.027

(0.671) (0.785) (0.552) (0.255) (0.467)
Log[Rank(Complexity)]c,i,t−1× TSc,t > P90(TSEurope-c,t) 2.897 3.297 3.292∗∗ 1.517 1.976

(2.923) (2.699) (1.512) (1.749) (1.405)
Log[Rank(Complexity)]c,i,t−1 −2.653∗∗∗ −2.976∗∗∗ −2.960∗∗ −4.947∗∗∗ −4.866∗∗∗ −3.059∗∗∗ −3.133∗∗∗ −4.065∗∗∗ −3.958∗∗∗ −3.637∗∗∗

(0.755) (0.770) (1.210) (1.569) (1.779) (0.746) (0.677) (0.933) (1.038) (1.085)
MBPc,t > µMBPEurope-c,t −9.359∗∗ −4.654 0.588 1.718 4.505 −61.976∗∗∗ −58.804∗∗∗ −58.425∗∗∗ −53.335∗∗∗ −32.054∗

(4.370) (4.850) (4.240) (5.373) (5.391) (12.503) (10.866) (16.954) (20.700) (18.956)
MBPc,t > P90(MBPEurope-c,t) 11.627∗∗∗ 10.947∗∗∗ 10.614∗∗∗ 9.297∗∗∗ 5.223∗

(2.273) (1.957) (3.008) (3.508) (3.109)
NMBPc,t > µNMBPEurope-c,t 0.850 −1.517 −6.734 −28.171∗∗∗ −26.300∗∗∗ −5.783 −10.599∗∗∗ −15.688∗∗∗ −15.938∗∗∗ −15.442∗∗∗

(2.461) (2.487) (7.685) (10.262) (9.733) (4.446) (4.053) (3.620) (3.230) (3.275)
NMBPc,t > P90(NMBPEurope-c,t) 1.459 2.480∗∗∗ 3.681∗∗∗ 3.474∗∗∗ 3.164∗∗∗

(0.969) (0.883) (0.614) (0.687) (0.768)
TSc,t > µTSEurope-c,t −0.903 −5.168 −2.217 −1.344 −0.193 −16.056 −19.489 −21.205 −10.120 −11.768

(3.845) (3.955) (2.388) (1.234) (2.167) (15.103) (14.339) (7.803) (9.848) (7.819)
TSc,t > P90(TSEurope-c,t) 2.897 3.297 3.292∗∗ 1.517 1.976

(2.923) (2.699) (1.512) (1.749) (1.405)

Control variables ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Technology FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 3,349 3,349 3,349 3,349 3,349 3,349 3,349 3,349 3,349 3,349
Adjusted R2 0.897 0.897 0.897 0.898 0.898 0.898 0.899 0.899 0.898 0.898

Note: SE are Driscoll-Kraay robust. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

• E.g., a one-percent increase in the complexity rank, combined with non-market-based

environmental policy stringency that is (1) above the European average or (2) in the top 10% of

European leaders, is associated with a 4.51% and 3.16% increase, respectively, in the trajectory

maturity needed for GTs to take off.
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Conclusion / & Perspectives

• Conclusions based on the results

1. Technological complexity—when accounting for national capabilities—hinders
both the introduction and take-off phases of GTs diffusion in European countries.

2. Highly stringent domestic environmental regulation—particularly through
market-based instruments—mitigates the hindering effect of complexity on
national diffusion.

3. This mitigation effect is weaker when using overly strict non-market-based
instruments during the take-off phase.

• Robustness checks

1. Alternative measures of tech. complexity: the original Method of Reflections
(Hidalgo and Hausmann, 2009) and the Method of Structural Diversity (Broekel, 2019).

2. Alternatives raw measures, and different thresholds for environmental policy
stringency (15th and 20th percentiles).

3. Alternative take-off thresholds: not only the estimated but also the observed
alternatives (12%, 15%, 17% and 20%).
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Conclusion / & Perspectives

• Perspectives/Open questions

1. How to better examine the long-term effects of environmental policy
stringency? Simply using separate regressions with different lags may not
suffice. Including the lags simultaneously could lead to multicolinearity. Any
suggestion?

2. Investigate the role of additional policy dimensions, especially the sequencing
and interaction of policies, which are known to produce synergistic,
counterproductive, or additive effects, and may further support the diffusion of
GTs (e.g. Boonekamp, 2006; Wiese et al., 2018; Howlett, 2019).

3. Patents capture an early stage of the TLC, prior to commercialization and
widespread adoption → Linking GTs to green products or trademarks (e.g.,
using cross-relatedness methods) (e.g. Castaldi and Drivas, 2023; de Cunzo
et al., 2022) may help identify adoption take-off.
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Tech. Trajectory Measure

• Logistic estimation is performed using the Levenberg-Marquardt Algorithm
(e.g., Cherp et al., 2021), implementing the following function:

f (t) =
L

1 + e−k·(t−t0)
(1)

• L is saturation level, k is steepness at the inflection, and t0 is the fractional
year estimated at the inflection.

• Take-off is defined as a linear combination of k and t0, and corresponds to
10% of saturation level (e.g., Pezzoni et al., 2022).

t10% = t0 −
2.2
k

(2)

• Evaluating the fit:

1. Trajectories ≥ 20 obs. & R2 ≥ 90% (Andersen, 1999; Pezzoni et al., 2022)

2. Maturity for the first observed year below the take-off milestone (< 10%)

3. Maturity for the last observed year above the inflection milestone
(≥ 50%) ( as Logistic function is symmetric before/after inflection)

4. Trajectories with take-off ∈ [1995, 2017] (limit of observation period)
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(Y02A10) Coastal zones; at river basins

(Y02B80) Architectural or constructional elements

(Y02P60) Agriculture, livestock or agroalimentary industries

(Y02P80) Sector−wide applications

(Y02T30) Transportation of goods or passengers via railways

(Y04S50) Market activities related to Smart grids

(Y02A50)  Air quality improvement, particulate matter reduction

(Y02D10) Energy−efficient computing

(Y02D30) Energy−efficient wireline, wireless communication

(Y02E60) Battery storage, capacitors, thermal storage, hydrogen tech

(Y02T10) Hybrid & electric vehicles, engine management/efficiency

(Y02T90) Electric vehicle charging, hydrogen transportation
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Figure 5: Top and bottom green technologies by complexity (1990 to 2017)

Note: The black dotted line represents the average complexity of GTs.
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Raw vs. Relative EPS
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Results - Introduction phase

Dependent variable: log of time between global and national GT introduction

Above European average stringency Strong sringency in Europe

EPS t-5 EPS t-4 EPS t-3 EPS t-2 EPS t-1 EPS t-5 EPS t-4 EPS t-3 EPS t-2 EPS t-1

Log[Rank(Complexity)]c,i,t−1× MBPc,t > µMBPEurope−c,t 0.0001 −0.002 −0.021 −0.022 −0.026∗∗

(0.030) (0.018) (0.013) (0.016) (0.010)
Log[Rank(Complexity)]c,i,t−1× MBPc,t > P90(MBPEurope−c,t) −0.067∗∗∗ −0.070∗∗∗ −0.121∗∗∗ −0.083∗∗∗ −0.056∗∗∗

(0.014) (0.013) (0.027) (0.019) (0.016)
Log[Rank(Complexity)]c,i,t−1× NMBPc,t > µNMBPEurope−c,t −0.069∗∗∗ −0.023 0.002 −0.018 −0.021∗

(0.023) (0.020) (0.010) (0.016) (0.012)
Log[Rank(Complexity)]c,i,t−1× NMBPc,t > P90(NMBPEurope−c,t) −0.008 0.025 −0.023∗∗∗ −0.025∗∗∗ −0.026∗∗∗

(0.030) (0.050) (0.007) (0.006) (0.006)
Log[Rank(Complexity)]c,i,t−1× TSc,t > µTSEurope−c,t 0.013 −0.004 0.020 −0.003 0.002

(0.027) (0.018) (0.015) (0.013) (0.011)
Log[Rank(Complexity)]c,i,t−1× TSc,t > P90(TSEurope−c,t) −0.042∗∗∗ −0.021 0.015 0.018 0.037∗∗

(0.014) (0.018) (0.011) (0.011) (0.016)
Log[Rank(Complexity)]c,i,t−1 0.018∗∗∗ 0.017∗∗ 0.011 0.031∗∗∗ 0.030∗∗∗ 0.016∗∗∗ 0.016∗∗ 0.031∗∗∗ 0.031∗∗∗ 0.030∗∗∗

(0.007) (0.007) (0.010) (0.008) (0.008) (0.006) (0.006) (0.006) (0.005) (0.005)
MBPc,t > µMBPEurope−c,t 0.009 0.020 0.129 0.122 0.155∗∗

(0.189) (0.118) (0.083) (0.106) (0.061)
MBPc,t > P90(MBPEurope−c,t)c,t 0.424∗∗∗ 0.446∗∗∗ 0.716∗∗∗ 0.457∗∗∗ 0.321∗∗∗

(0.091) (0.083) (0.164) (0.116) (0.105)
NMBPc,t > µNMBPEurope−c,t 0.482∗∗∗ 0.169 −0.033 0.115 0.138∗

(0.148) (0.132) (0.065) (0.102) (0.072)
NMBPc,t > P90(NMBPEurope−c,t) 0.138 −0.087 0.128∗∗∗ 0.132∗∗∗ 0.135∗∗∗

(0.177) (0.301) (0.038) (0.032) (0.033)
TSc,t > µTSEurope−c,t −0.071 0.041 −0.136 −0.007 −0.032

(0.173) (0.112) (0.089) (0.082) (0.067)
TSc,t > P90(TSEurope−c,t) 0.309∗∗∗ 0.155 −0.094 −0.096 −0.187∗∗

(0.083) (0.107) (0.060) (0.062) (0.081)
Log[GDP per capita]c,t−1 −0.010 −0.006 0.010 0.003 0.002 −0.004 −0.005 0.012∗ 0.010 0.008

(0.008) (0.008) (0.010) (0.008) (0.010) (0.007) (0.007) (0.006) (0.007) (0.008)
Log[Trade Openness]c,t−1 0.023∗ 0.026∗ 0.032∗∗ 0.026∗∗ 0.026∗∗∗ 0.027∗∗ 0.029∗∗ 0.022∗∗ 0.024∗∗ 0.024∗∗

(0.012) (0.014) (0.013) (0.011) (0.010) (0.011) (0.012) (0.010) (0.011) (0.011)
Borderc,i −0.013∗∗ −0.015∗∗ −0.012∗∗ −0.015∗∗ −0.014∗∗ −0.014∗∗ −0.015∗∗ −0.012∗ −0.015∗∗ −0.014∗∗

(0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.006) (0.006) (0.006) (0.006)
Pioneerc,i −0.025∗∗ −0.026∗∗ −0.022∗ −0.027∗∗∗ −0.030∗∗∗ −0.026∗∗ −0.029∗∗∗ −0.025∗∗ −0.025∗∗ −0.025∗∗

(0.011) (0.011) (0.011) (0.010) (0.011) (0.010) (0.009) (0.010) (0.010) (0.010)
Firms countc,i,t−1 0.001 0.001 −0.001 −0.001 −0.001 0.0001 0.0003 −0.002 −0.002 −0.002

(0.001) (0.001) (0.002) (0.002) (0.002) (0.001) (0.001) (0.002) (0.003) (0.003)
Universities countc,i,t−1 0.009 0.011 0.008 0.012 0.014 0.013 0.013 0.017 0.018 0.017

(0.012) (0.012) (0.011) (0.011) (0.011) (0.013) (0.013) (0.012) (0.012) (0.012)
Log[Green diversification +1]c,t−1 −0.020∗∗∗ −0.021∗∗∗ −0.012∗∗ −0.009 −0.013∗∗ −0.019∗∗∗ −0.019∗∗∗ −0.013∗∗ −0.011∗∗ −0.012∗∗

(0.006) (0.006) (0.005) (0.007) (0.006) (0.006) (0.006) (0.005) (0.005) (0.005)

Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 908 908 908 908 908 908 908 908 908 908
Adjusted R2 0.916 0.913 0.911 0.912 0.910 0.915 0.913 0.912 0.911 0.911

Note: SE are heteroskedasticity-robust and clustered at the country level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Results - Take-off phase

Dependent variable: percentage of trajectory maturity estimated until take-off (10%)

Above European average stringency Strong sringency in Europe

EPS t-5 EPS t-4 EPS t-3 EPS t-2 EPS t-1 EPS t-5 EPS t-4 EPS t-3 EPS t-2 EPS t-1

Log[Rank(Complexity)]c,i,t−1× MBPc,t > µMBPEurope-c,t 1.925∗∗ 0.954 −0.065 −0.261 −0.586
(0.785) (0.932) (0.802) (0.996) (1.012)

Log[Rank(Complexity)]c,i,t−1× MBPc,t > P90(MBPEurope-c,t) 11.627∗∗∗ 10.947∗∗∗ 10.614∗∗∗ 9.297∗∗∗ 5.223∗

(2.273) (1.957) (3.008) (3.508) (3.109)
Log[Rank(Complexity)]c,i,t−1× NMBPc,t > µNMBPEurope-c,t 0.074 0.487 1.334 4.717∗∗∗ 4.514∗∗

(0.453) (0.441) (1.351) (1.809) (1.795)
Log[Rank(Complexity)]c,i,t−1× NMBPc,t > P90(NMBPEurope-c,t) 1.459 2.480∗∗∗ 3.681∗∗∗ 3.474∗∗∗ 3.164∗∗∗

(0.969) (0.883) (0.614) (0.687) (0.768)
Log[Rank(Complexity)]c,i,t−1× TSc,t > µTSEurope-c,t −0.016 0.679 0.084 0.040 0.027

(0.671) (0.785) (0.552) (0.255) (0.467)
Log[Rank(Complexity)]c,i,t−1× TSc,t > P90(TSEurope-c,t) 2.897 3.297 3.292∗∗ 1.517 1.976

(2.923) (2.699) (1.512) (1.749) (1.405)
Log[Rank(Complexity)]c,i,t−1 −2.653∗∗∗ −2.976∗∗∗ −2.960∗∗ −4.947∗∗∗ −4.866∗∗∗ −3.059∗∗∗ −3.133∗∗∗ −4.065∗∗∗ −3.958∗∗∗ −3.637∗∗∗

(0.755) (0.770) (1.210) (1.569) (1.779) (0.746) (0.677) (0.933) (1.038) (1.085)
MBPc,t > µMBPEurope-c,t −9.359∗∗ −4.654 0.588 1.718 4.505 −61.976∗∗∗ −58.804∗∗∗ −58.425∗∗∗ −53.335∗∗∗ −32.054∗

(4.370) (4.850) (4.240) (5.373) (5.391) (12.503) (10.866) (16.954) (20.700) (18.956)
MBPc,t > P90(MBPEurope-c,t) 11.627∗∗∗ 10.947∗∗∗ 10.614∗∗∗ 9.297∗∗∗ 5.223∗

(2.273) (1.957) (3.008) (3.508) (3.109)
NMBPc,t > µNMBPEurope-c,t 0.850 −1.517 −6.734 −28.171∗∗∗ −26.300∗∗∗ −5.783 −10.599∗∗∗ −15.688∗∗∗ −15.938∗∗∗ −15.442∗∗∗

(2.461) (2.487) (7.685) (10.262) (9.733) (4.446) (4.053) (3.620) (3.230) (3.275)
NMBPc,t > P90(NMBPEurope-c,t) 1.459 2.480∗∗∗ 3.681∗∗∗ 3.474∗∗∗ 3.164∗∗∗

(0.969) (0.883) (0.614) (0.687) (0.768)
TSc,t > µTSEurope-c,t −0.903 −5.168 −2.217 −1.344 −0.193 −16.056 −19.489 −21.205 −10.120 −11.768

(3.845) (3.955) (2.388) (1.234) (2.167) (15.103) (14.339) (7.803) (9.848) (7.819)
TSc,t > P90(TSEurope-c,t) 2.897 3.297 3.292∗∗ 1.517 1.976

(2.923) (2.699) (1.512) (1.749) (1.405)
RTAc,t−1 0.686∗∗∗ 0.628∗∗ 0.714∗∗ 0.719∗∗ 0.665∗∗ 0.715∗∗∗ 0.669∗∗ 0.734∗∗∗ 0.684∗∗ 0.722∗∗∗

(0.261) (0.276) (0.285) (0.283) (0.291) (0.269) (0.268) (0.266) (0.275) (0.279)
Firms countc,i,t−1 0.678∗∗∗ 0.707∗∗∗ 0.630∗∗∗ 0.622∗∗∗ 0.650∗∗∗ 0.691∗∗∗ 0.634∗∗∗ 0.600∗∗∗ 0.576∗∗∗ 0.543∗∗∗

(0.113) (0.102) (0.125) (0.124) (0.135) (0.131) (0.116) (0.125) (0.116) (0.110)
Universities countc,i,t−1 0.321 0.308 0.348 0.447∗∗ 0.435∗∗ 0.501∗∗ 0.585∗∗ 0.246 0.161 0.225

(0.301) (0.293) (0.256) (0.179) (0.212) (0.252) (0.257) (0.237) (0.276) (0.281)
Trade Opennessc,t−1 0.101∗∗∗ 0.108∗∗∗ 0.113∗∗∗ 0.094∗∗∗ 0.093∗∗∗ 0.118∗∗∗ 0.124∗∗∗ 0.116∗∗∗ 0.105∗∗∗ 0.094∗∗∗

(0.028) (0.028) (0.034) (0.026) (0.025) (0.032) (0.027) (0.029) (0.028) (0.027)
Green diversificationc,t−1 0.076 0.063 0.101 0.085 0.047 0.075 −0.006 0.008 0.002 0.056

(0.093) (0.097) (0.093) (0.088) (0.081) (0.101) (0.119) (0.095) (0.098) (0.089)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Technology FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 3,349 3,349 3,349 3,349 3,349 3,349 3,349 3,349 3,349 3,349
Adjusted R2 0.897 0.897 0.897 0.898 0.898 0.898 0.899 0.899 0.898 0.898

Note: SE are Driscoll-Kraay robust. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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