

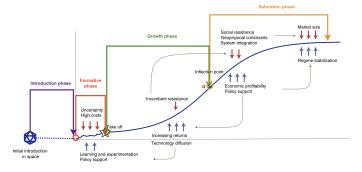
Complex technologies and speed of diffusion in Europe: Evidence from green patents

Kevin Souchard, Ernest Miguelez and Maïder Saint Jean

Bordeaux School of Economics, UMR CNRS 6060, Bordeaux University, France

Funded by European Union's Horizon Europe Programme under Grant Agreement No. 101094551

. **.** . . .

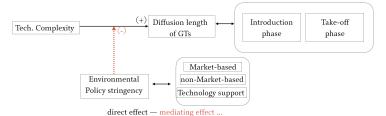

Background

- · Unprecedented challenges related to climate change.
- Accelerating the diffusion of Green Technologies (GTs) to mitigate GHG emissions (OECD, 2009; Hasna et al., 2023), yet multiple barriers (e.g., Rennings, 2000; Ghisetti and Quatraro, 2017).
- Tech. complexity may represent a barrier.
- GTs are more complex than conventional techs ⇒ require recombining numerous, distant, and cognitively diverse knowledge domains (Barbieri et al., 2016; Fusillo, 2019); tech. complexity increases over time (Broekel, 2019).
- Most widely validated complexity framework:
 Economic Complexity (EC) ⇒ Captures how well a location combines diverse capabilities to generate unique and complex technologies (Hidalgo and Hausmann, 2009; Tacchella et al., 2012).

- The spatial dimension of the tech. diffusion-complexity relationship has been investigated...
 - 1. Concentration in productive places (e.g., Pintar and Scherngell, 2022; Mewes and Broekel, 2022), with European regions as illustrative cases (Antonelli, 2022; Pinheiro et al., 2022).
 - 2. Larger knowledge spillovers (e.g., Dechezlepretre et al., 2017; Barbieri et al., 2020).
- ... But the temporal dimension remains largely unexplored.

Complexity & Diffusion

- The temporality of tech. diffusion can be investigated in two ways:
 - 1. Introduction phase \Rightarrow from global emergence to locational introduction (Li et al., 2021, 2023).
 - Trajectory phases ⇒ from locational introduction to key milestones along the trajectory curve: take-off, inflection, and saturation (Andersen, 1999; Bento et al., 2018; Cherp et al., 2021).
- Recent evidence shows a longer time to take-off for complex novel techs (Pezzoni et al., 2022).



Motivations & Hypotheses

- Does complexity ⇒ greater sustainability? Consensus is lacking, but several encouraging empirical findings:
 - 1. Economically (e.g., Hidalgo and Hausmann, 2009; Mewes and Broekel, 2022)
 - 2. Socially (e.g., Hartmann et al., 2017; Sbardella et al., 2017)
 - 3. Environmentally (e.g., Mealy and Teytelboym, 2022; Romero and Gramkow, 2021)
- Limited research addresses the temporality of GTs diffusion and its connection to complexity, despite existing research perspectives.
- The complexity paradigm holds potential for understanding challenges in accelerating GTs diffusion.

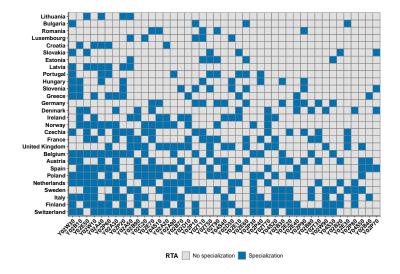
Research Question & Hypotheses

- One of the key questions is: To what extent does technological complexity impact the diffusion of GTs across European countries?
- Dependent variables: length of (1) the introduction phase, and (2) the formative phase (up to take-off).
- Independent variables: technological complexity, and environmental policy stringency.
- Hypothesis 1: Technological complexity (+) associated with the length of the diffusion of GTs.
- Hypothesis 2: National environmental policy stringency (-) mitigates the (+) effect of technological complexity on the length of the diffusion of GTs.

Methodology

- Patents reliably measure GTs (Barbieri et al., 2016).
- Unit of analysis: Country/GT pair (EU-27, the UK, Norway and Switzerland; 43 GTs)

Patent selection \Rightarrow DOCDB Patent family (PATSTAT):


- 1. Contains at least one application's CPC code aligned to a **Green class** (i.e., within **Y02 or Y04S**) (see Veefkind et al., 2012).
- 2. Filed at the European Patent Office (ensures patent quality & homogeneity).
- 3. Priority date between 1979-2017 (before truncation).
- 4. Country identified by inventor's address (full counting).
- Technology:
 - At the six-digit level; e.g., 'Y02B20' corresponds to energy-efficient lighting.
 - Minimum of 500 patents per tech. globally (between 1979 and 2017) \Rightarrow 43 GTs retained.

- Complexity-Fitness Method (CFM) (Tacchella et al., 2012) is a widely adopted and robust measure of EC (e.g., Cristelli et al., 2013; de Cunzo et al., 2022; Sbardella et al., 2018; Napolitano et al., 2022).
- **Complexity** is measured using an RTA matrix on global patent data ($M_{c,k,t}$), capturing national (*c*) specialization in technology (*k*).

$$RTA_{c,k,t} = \frac{PO_{c,k,t} / \sum_{k} PO_{c,k,t}}{\sum_{c} PO_{c,k,t} / \sum_{c,k} PO_{c,k,t}} \qquad M_{c,k,t} = \begin{cases} 0 & \text{if } RTA_{c,k,t} \le 1\\ 1 & \text{if } RTA_{c,k,t} > 1 \end{cases}$$

- M_{c,k,t} = 0/1: no specialization/specialization in a technology field given the global technological landscape.
- Binary RTA is preferred, continuous values tend to be unstable and noisy (e.g., Balland et al., 2019).

Complexity Measure (2)

Figure 1: Matrix example using RTA, selection of European countries and GTs (EPO patents, 2015-2017 averaged window)

Complexity Measure (3)

• National fitness (*F_c*) and technology sophistication (*Q_k*) are iteratively computed and updated using the following equations (Tacchella et al., 2012):

$$Q_{k,t}^{0} = 1, \quad F_{c,t}^{0} = 1 \quad \forall k \in K, \ c \in C$$

$$\begin{cases} \tilde{F}_{c,t}^{n} = \sum_{k=1}^{K} M_{c,k} Q_{k,t}^{(n-1)} \\ \tilde{Q}_{k,t}^{n} = \left(\frac{1}{\sum_{c=1}^{R} M_{c,k} \left(\frac{1}{F_{c,t}^{n-1}}\right)}\right) \qquad \begin{cases} F_{c,t}^{n} = \frac{\tilde{F}_{c,t}^{n}}{\langle \tilde{F}_{k,t}^{n} \rangle} \\ Q_{k,t}^{n} = \frac{\tilde{Q}_{k,t}^{n}}{\langle \tilde{Q}_{k,t}^{n} \rangle} \end{cases}$$

• A high national fitness ($F_{c,t}$) indicates specialization in diverse and sophisticated technologies ($Q_{k,t}$), while higher technology sophistication ($Q_{k,t}$) reflects that only a few countries specialize in this technology, and those countries have relatively high fitness ($F_{c,t}$).

- Two adaptations to measure complexity per country-GT pair over time:
 - 1. Relative complexity measure:

Fitness-Complexity_{$k,i,t} = Q_{k,t} - F_{i,t}$ </sub>

How complex is a GT compared to the country's average technological capabilities?

2. Inverted ranking transformation (due to independent matrix computation) (e.g., Caldarola et al., 2024)

A higher-ranked GT-European country pair reflects a greater complexity gap between the GT and the country's average technological capabilities compared to other pairs.

Diffusion Measure (1): Introduction phase

- Diffusion in terms of technological knowledge (via patents).
- A country introduced a GT as of its earliest priority date.
 - 1. Global introduction period: 1979–2017 \rightarrow Marks the global emergence of green patents.
 - 2. European introduction period: 1995-2017 \rightarrow Aligns with the start of available data on national environmental policy stringency.

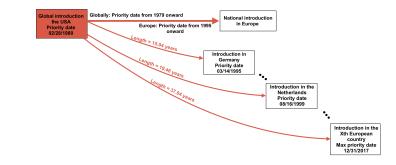
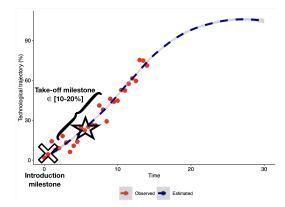
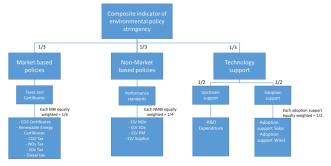



Figure 2: Illustrative example of the introduction phase - Reducing energy consumption technologies in ICT (CPC: Y02D30)

- · Capturing the take-off milestone requires identifying tech. trajectories.
- Trajectory is **measured by the cumulative count of patents** over time for each GT, starting from its national introduction.
- Similar measures exist (e.g., Verhoeven et al., 2016; Pezzoni et al., 2022, 2023), but without associating trajectories to specific country-technology pairs.
 E.g., the unit France/Y02T10 corresponds to the French green transport.
- Two main challenges:
 - 1. Identifying distinct trajectory phases (i.e., formative, growth, and saturation phases).
 - 2. Risk of underestimating take-off for emerging GTs.

Diffusion Measure (3): Take-off phase


- A logistic function fits the trajectory to its asymptotic limit—a widely accepted S-shape in the diffusion literature (e.g., Cherp et al., 2021; Andersen, 1999) (for evaluation of the fitting, click here).
- · Take-off milestone corresponds to 10% of trajectory's maturity

(e.g., Pezzoni et al., 2022).

Environmental Policy Stringency Measure (1)

- The OECD's Environmental Policy Stringency (EPS) index is defined "as a higher, explicit or implicit, cost of polluting or environmentally harmful behavior" (Botta and Koźluk, 2014; Kruse et al., 2022).
- EPS index is a widely used measure (Galeotti et al., 2020), it ranges from 0 (not stringent) to 6 (most stringent), is measured annually, and is disaggregated into market-based, non-market-based, and technology support instruments.

Note: The figure shows the aggregation structure of the revised EPS index (referred to as "EPS21"). Source: OECD.

Environmental Policy Stringency Measure (2)

- A relative EPS index is used instead of raw stringency to reflect each European country's position within the European context. (for visualization of the differences, click here)
- · Relative EPS index is defined as:

Relative
$$EPS_{c,t,k} = \frac{EPS_{c,t,k}}{\frac{1}{N}\sum_{j \neq c} EPS_{j,t,k}}$$
 for all *j* where $j \neq c$

 Leader and laggard countries are identified via yearly dummies by instrument type:

$$\mathsf{Dummy} \ \mathsf{EPS}_{c,t,k} = \begin{cases} 1 & \text{if Relative } \mathsf{EPS}_{c,t,k} > \lambda \ \mathsf{EPS}_{\mathsf{Europe}-c,t,k} \\ 0 & \text{if Relative } \mathsf{EPS}_{c,t,k} \le \lambda \ \mathsf{EPS}_{\mathsf{Europe}-c,t,k} \end{cases}$$

- Where \u03c6 is a threshold, taking two main values:
 - 1. The average of other European countries,
 - 2. The 90th percentile of the European distribution (with \neq thresholds tested).
- To ensure stability, a value of one is assigned only if the condition is met in the two prior years, for a given country and instrument type.

Econometric estimates

Introduction phase (cross-sectional data): Natural logarithm of the time lag (in days) between global and national introduction of GTs ⇒ OLS estimation with time fixed effects:

$$\begin{aligned} \text{Log}[Y]_{i,c}^{introduction} &= \alpha + \beta_0 + \theta_1 \text{Log}[\text{Rank}(\text{Complexity})]_{c,i,t-1} \\ &+ \beta_1(\text{EPS} > \lambda \text{European-EPS})_c(t-s) + \beta_2 Z_c + \\ &\beta_3 X_c(t-1) + \sum_{\rho} \beta_{4+\rho} \text{Period}_{\rho} + \epsilon_{i,c} \end{aligned}$$

• **Take-off phase** (longitudinal data): Percentage of estimated trajectory maturity from national introduction of GTs to national take-off ⇒ panel fixed effects estimation:

$$\begin{split} \mathsf{Y}_{i,c}(t)^{\textit{take-off}} &= \alpha + \beta_0 + \theta_1 \mathsf{Log}[\mathsf{Rank}(\mathsf{Complexity})]_{c,i,t-1} \\ &+ \beta_1(\mathsf{EPS} \! > \! \lambda \mathsf{European} \! \cdot \! \mathsf{EPS})_c(t-s) + \beta_2 X_c(t-1) \\ &+ \sum_t \beta_{3+t} \mathsf{year}_{i,c,t} + \gamma_i + \delta_c + \epsilon_{i,c} \end{split}$$

$$\end{split}$$
Where:
$$\begin{aligned} \mathsf{Y}_{i,c}(t)^{\textit{take-off}} &= \left[\frac{\mathsf{Maturity estimated}_{i,c}(t)}{\mathsf{Maturity estimated}_{i,c}^{\mathsf{Take-Off}}} \right] \times 100 \end{split}$$

17

Descriptive statistics

European country complexity rankings

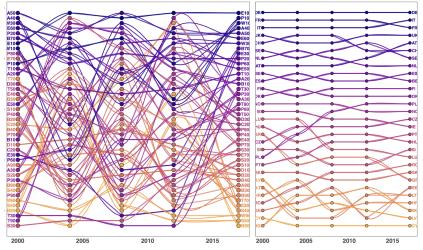


Figure 3: Comparison of GT and European country complexity rankings over time (2000-2017)

Note: Colors correspond to the ranking in 2017 (darker tones indicating higher complexity)

Descriptive statistics

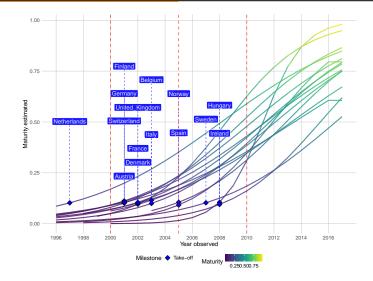


Figure 4: Estimated European trajectories for reducing energy consumption technologies in ICT (Logistic function fitted on CPC: Y02D30; take-off defined at 10% of estimated maturity)

Results - Introduction phase

Results - Introduction phase

	Dependent v	variable: log of time	e between global a	nd national GT intr	oduction
-	(1)	(2)	(3)	(4)	(5)
Log[Rank(Complexity)] _{c,i,t-1}	0.033***	0.026***	0.023***	0.024***	0.017***
	(0.006)	(0.006)	(0.006)	(0.006)	(0.006)
Log[GDP per capita] _{c,t-1}		-0.017	-0.014	-0.014	0.0002
		(0.012)	(0.011)	(0.011)	(0.006)
Log[Trade Openness] _{c,t-1}		0.030***	0.031***	0.031***	0.030***
		(0.011)	(0.011)	(0.011)	(0.010)
Pioneer _{c,i}			-0.027***	-0.027**	-0.025***
			(0.010)	(0.011)	(0.009)
Border _{c,i}			-0.016**	-0.016**	-0.014**
			(0.008)	(0.008)	(0.007)
Firms count _{c,i,t-1}				0.0004	-0.0003
				(0.002)	(0.002)
Universities count _{c,i,t-1}				0.009	0.009
				(0.011)	(0.012)
Log[Green diversification +1]c,t-1				. ,	-0.017**
					(0.008)
Time FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Observations	1,048	1,048	1,048	1,048	1,048
Adjusted R ²	0.922	0.925	0.925	0.925	0.926

Note: SE are heteroskedasticity-robust and clustered at the country level. *p<0.1; **p<0.05; ***p<0.01

 A one-percent increase in the complexity rank corresponds to a 1.7% increase in the time lag for introducing GTs.

	Dependent variable: log of time between global and national GT introduction											
		Above Eur	opean average	stringency		Strong sringency in Europe (90th percentile)						
	EPS t-5	EPS t-4	EPS t-3	EPS t-2	EPS t-1	EPS t-5	EPS t-4	EPS t-3	EPS t-2	EPS t-1		
og[Rank(Complexity)] _{c,i,t-1} × MBPc,t > µMBP _{Europe-c,t}	0.0001	-0.002	-0.021	-0.022	-0.026**							
	(0.030)	(0.018)	(0.013)	(0.016)	(0.010)							
og[Rank(Complexity)] _{c,i,t-1} × MBPc,t > P ₈₀ (MBP _{Europe-c,t})						-0.067***	-0.070***	-0.121***	-0.083***	-0.056**		
						(0.014)	(0.013)	(0.027)	(0.019)	(0.016)		
og[Rank(Complexity)] _{c,i,t-1} × NMBPc,t > µNMBP _{Europe-c,t}	-0.069***	-0.023	0.002	-0.018	-0.021*							
	(0.023)	(0.020)	(0.010)	(0.016)	(0.012)							
og[Rank(Complexity)] _{c,i,t-1} × NMBPc,t > P ₉₀ (NMBP _{Europe-c,t})						-0.008	0.025	-0.023***	-0.025***	-0.026**		
						(0.030)	(0.050)	(0.007)	(0.006)	(0.006)		
og[Rank(Complexity)] _{c,i,t-1} × TSc,t > µTS _{Expe-c,t}	0.013	-0.004	0.020	-0.003	0.002							
	(0.027)	(0.018)	(0.015)	(0.013)	(0.011)							
$og[Rank(Complexity)]_{c,l,l-1} \times TSc, t > P_{90}(TS_{Europe-c,l})$	(,					-0.042***	-0.021	0.015	0.018	0.037**		
						(0.014)	(0.018)	(0.011)	(0.011)	(0.016)		
og[Rank(Complexity)]c./.r-1	0.018***	0.017**	0.011	0.031***	0.030***	0.016***	0.016**	0.031***	0.031***	0.030**		
	(0.007)	(0.007)	(0.010)	(0.008)	(0.008)	(0.006)	(0.006)	(0.006)	(0.005)	(0.005)		
$IBPc, t > \mu MBP_{Europe-c.t}$	0.009	0.020	0.129	0.122	0.155**	(,	()					
	(0.189)	(0.118)	(0.083)	(0.106)	(0.061)							
$IBPc, t > P_{80}(MBP_{Europe-c,t})_{c,t}$	(0.100)	(00)	(0.000)	(41144)	(0.00.)	0.424***	0.446***	0.716***	0.457***	0.321**		
and the second standard stan						(0.091)	(0.083)	(0.164)	(0.116)	(0.105)		
$MBPc, t > \mu NMBP_{Europe-c,t}$	0.482***	0.169	-0.033	0.115	0.138*	(0.001)	(0.000)	(0.101)	(0.1.00)	(000)		
and the provide surger and	(0.148)	(0.132)	(0.065)	(0.102)	(0.072)							
$MBPc, t > P_{90}(NMBP_{Darger-c, t})$	(00)	(0.102)	(0.000)	(0.1.02)	(0.0.2)	0.138	-0.087	0.128***	0.132***	0.135**		
the off of a strength with the strength of the						(0.177)	(0.301)	(0.038)	(0.032)	(0.033)		
$Sc.t > \mu TS_{Europe-c.t}$	-0.071	0.041	-0.136	-0.007	-0.032	(0)	(0.001)	(0.000)	(0.002)	(0.000)		
ent > p-realize-c.	(0.173)	(0.112)	(0.089)	(0.082)	(0.067)							
$Sc.t > P_{90}(TS_{Europe-c.t})$	(0.170)	(0.112)	(0.000)	(0.002)	(0.007)	0.309***	0.155	-0.094	-0.096	-0.187**		
() () () () () () () () () () () () () ((0.083)	(0.107)	(0.060)	(0.062)	(0.081)		
ontrol variables	<	4	4	4	4	4	1	1	1	1		
ime FE	1	4	4	4	4	4			4	~		
bservations	908	908	908	908	908	908	908	908	908	908		
diusted R ²	0.916	0.913	0.911	0.912	0.910	0.915	0.913	0.912	0.911	0.911		

 E.g., a one-percent increase in the complexity rank, combined with market-based environmental policy stringency that is (1) above the European average or (2) in the top 10% of European leaders, is associated with a 2.6% and 5.6% reduction, respectively, in the time lag for introducing GTs.

Results - Take-off phase

	Dependent va	Dependent variable: percentage of trajectory maturity estimated until take-off (10%)								
	(1)	(2)	(3)	(4)	(5)					
Log[Rank(Complexity)]c,i,t-1	-2.668	-3.203***	-3.550***	-3.505***	-2.167***					
	(1.994)	(1.243)	(1.247)	(1.240)	(0.826)					
GDP per capita _{c,t-1}		0.006***	0.006***	0.006***	-0.0003					
		(0.001)	(0.0005)	(0.0005)	(0.0002)					
RTA _{c,t-1}		0.052	-0.981*	-0.976^{*}	0.722**					
		(0.410)	(0.556)	(0.565)	(0.283)					
Trade Openness _{c,t-1}		0.622***	0.606***	0.604***	0.087***					
		(0.157)	(0.158)	(0.158)	(0.026)					
Firms count _{c,i,t-1}			1.383***	1.382***	0.623***					
			(0.274)	(0.275)	(0.124)					
Universities count _{c,i,t-1}			2.414***	2.434***	0.307					
			(0.502)	(0.504)	(0.279)					
Green diversification _{c,t-1}				0.151	0.096					
				(0.163)	(0.094)					
Country FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
Technology FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
Year FE	×	×	×	×	\checkmark					
Observations	3,349	3,349	3,349	3,349	3,349					
Adjusted R ²	0.146	0.763	0.770	0.770	0.897					

Note: SE are Driscoll-Kraay robust. *p<0.1; **p<0.05; ***p<0.01

 A one-percent increase in the complexity rank is associated with a 2.17% decrease in the trajectory maturity needed for GTs to take off.

	Dependent variable: percentage of trajectory maturity estimated until take-off (10%)											
		Above Euro	opean average sl	ringency		Strong sringency in Europe (90 th percentile)						
	EPS t-5	EPS t-4	EPS t-3	EPS t-2	EPS t-1	EPS t-5	EPS t-4	EPS t-3	EPS t-2	EPS t-1		
Log[Rank(Complexity)] _{c,i,t-1} × MBPc,t > µMBPEurope-c,t	1.925**	0.954	-0.065	-0.261	-0.586							
	(0.785)	(0.932)	(0.802)	(0.996)	(1.012)							
Log[Rank(Complexity)] _{c,i,t-1} × MBPc,t > P _{I0} (MBPEurope-c,t)						11.627***	10.947***	10.614***	9.297***	5.223*		
						(2.273)	(1.957)	(3.008)	(3.508)	(3.109)		
.og[Rank(Complexity)] _{c,i,t-1} × NMBPc,t > µNMBPEurope-c,t	0.074	0.487	1.334	4.717***	4.514**							
	(0.453)	(0.441)	(1.351)	(1.809)	(1.795)							
Log[Rank(Complexity)] _{c,i,t-1} × NMBPc,t > P ₈₀ (NMBPEurope-c,t)						1,459	2.480***	3.681***	3.474***	3.164**		
						(0.969)	(0.883)	(0.614)	(0.687)	(0.768)		
Log[Rank(Complexity)]c.t.t × TSc.t > µTSEurope-c.t	-0.016	0.679	0.084	0.040	0.027	(0.000)	(0.000)	(4.4.1)	()	(0.100)		
	(0.671)	(0.785)	(0.552)	(0.255)	(0.467)							
Log[Rank(Complexity)] _{c,i,t-1} × TSc,t > P ₈₀ (TSEurope-c,t)	(0.0.1)	(4.1.66)	(0.002)	(4444)	()	2.897	3.297	3.292**	1.517	1.976		
and and an interview of the set o						(2.923)	(2.699)	(1.512)	(1.749)	(1.405)		
Log[Rank(Complexity)] _{c,i,t-1}	-2.653***	-2.976***	-2.960**	-4.947***	-4.866***	-3.059***	-3.133***	-4.065***	-3.958***	-3.637**		
	(0.755)	(0.770)	(1.210)	(1.569)	(1.779)	(0.746)	(0.677)	(0.933)	(1.038)	(1.085)		
MBPc.t > #MBPEurope.c.t	-9.359**	-4.654	0.588	1.718	4.505	-61.976***	-58.804***	-58.425***	-53.335***	-32.054*		
мана, > ривнешорек,	(4.370)	(4.850)	(4.240)	(5.373)	(5.391)	(12.503)	(10.855)	(16.954)	(20.700)	(18.956)		
MBPc.t > Pec(MBPEurope-c.t)	(4.370)	(4.650)	(4.240)	(0.373)	(0.391)	11.627***	10.947***	10.614***	9.297***	(18.906) 5.223*		
MBPC,t > P(c(MBPE0t0pe-c,t)						(2.273)	(1.957)			(3.109)		
				-28.171***				(3.008)	(3.508)			
NMBPc,t > µNMBPEurope-c,t	0.850	-1.517	-6.734		-26.300***	-5.783	-10.599***	-15.688***	-15.938***	-15.442**		
	(2.461)	(2.487)	(7.685)	(10.262)	(9.733)	(4.446)	(4.053)	(3.620)	(3.230)	(3.275)		
NMBPc,t > P ₁₀ (NMBPEurope-c,t)						1.459	2.480***	3.681***	3.474***	3.164**		
						(0.969)	(0.883)	(0.614)	(0.687)	(0.768)		
TSc,t > µTSEurope-c,t	-0.903	-5.168	-2.217	-1.344	-0.193	-16.056	-19.489	-21.205	-10.120	-11.768		
	(3.845)	(3.955)	(2.388)	(1.234)	(2.167)	(15.103)	(14.339)	(7.803)	(9.848)	(7.819)		
TSc,t > Pio(TSEurope-c,t)						2.897	3.297	3.292**	1.517	1.976		
						(2.923)	(2.699)	(1.512)	(1.749)	(1.405)		
Control variables	<	4	4	4	4	4	1	4	4	4		
Country FE	~	4	4	4	4	4	1	4	4	4		
Technology FE	~	1	1	1	4	4	1	1	4	4		
Year FE	4	4	1	4	4	4	4	4	4	1		
Observations	3.349	3.349	3.349	3.349	3.349	3.349	3.349	3.349	3.349	3.349		
Adjusted R ²	0.897	0.897	0.897	0.898	0.898	0.898	0.899	0.899	0.898	0.898		

Note: SE are Driscoll-Kraay robust. *p<0.1; **p<0.05; ***p<0.01

 E.g., a one-percent increase in the complexity rank, combined with non-market-based environmental policy stringency that is (1) above the European average or (2) in the top 10% of European leaders, is associated with a 4.51% and 3.16% increase, respectively, in the trajectory maturity needed for GTs to take off.

Conclusion / Perspectives

Conclusion / & Perspectives

· Conclusions based on the results

- Technological complexity—when accounting for national capabilities—hinders both the introduction and take-off phases of GTs diffusion in European countries.
- Highly stringent domestic environmental regulation—particularly through market-based instruments—mitigates the hindering effect of complexity on national diffusion.
- This mitigation effect is weaker when using overly strict non-market-based instruments during the take-off phase.

Robustness checks

- Alternative measures of tech. complexity: the original Method of Reflections (Hidalgo and Hausmann, 2009) and the Method of Structural Diversity (Broekel, 2019).
- Alternatives raw measures, and different thresholds for environmental policy stringency (15th and 20th percentiles).
- 3. Alternative take-off thresholds: not only the estimated but also the observed alternatives (12%, 15%, 17% and 20%).

Perspectives/Open questions

- How to better examine the long-term effects of environmental policy stringency? Simply using separate regressions with different lags may not suffice. Including the lags simultaneously could lead to multicolinearity. Any suggestion?
- Investigate the role of additional policy dimensions, especially the sequencing and interaction of policies, which are known to produce synergistic, counterproductive, or additive effects, and may further support the diffusion of GTs (e.g. Boonekamp, 2006; Wiese et al., 2018; Howlett, 2019).
- Patents capture an early stage of the TLC, prior to commercialization and widespread adoption → Linking GTs to green products or trademarks (e.g., using cross-relatedness methods) (e.g. Castaldi and Drivas, 2023; de Cunzo et al., 2022) may help identify adoption take-off.

Thank you!

Appendices

Tech. Trajectory Measure

• Logistic estimation is performed using the Levenberg-Marquardt Algorithm (e.g., Cherp et al., 2021), implementing the following function:

$$f(t) = \frac{L}{1 + e^{-k \cdot (t - t_0)}}$$
(1)

- L is saturation level, k is steepness at the inflection, and t₀ is the fractional year estimated at the inflection.
- Take-off is defined as a linear combination of *k* and *t*₀, and corresponds to 10% of saturation level (e.g., Pezzoni et al., 2022).

$$t_{10\%} = t_0 - \frac{2.2}{k} \tag{2}$$

- · Evaluating the fit:
 - 1. Trajectories \geq 20 obs. & $R^2 \geq$ 90% (Andersen, 1999; Pezzoni et al., 2022)
 - 2. Maturity for the first observed year below the take-off milestone (< 10%)
 - Maturity for the last observed year above the inflection milestone (≥ 50%) (as Logistic function is symmetric before/after inflection)
 - Trajectories with take-off ∈ [1995, 2017] (limit of observation period)

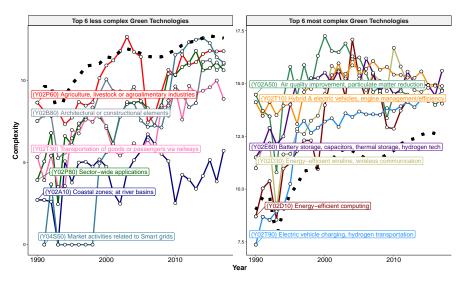
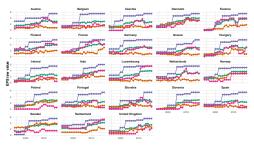



Figure 5: Top and bottom green technologies by complexity (1990 to 2017)

Note: The black dotted line represents the average complexity of GTs.

Raw vs. Relative EPS

Policy type + Market-based + Non-market-based + Technology support

(original slide, click here)

Results - Introduction phase

		Above Fu	opean average sl	Iringency	Strong sringency in Europe					
	EPS t-5	EPS t-4	EPS t-3	EPS t-2	EPS t-1	EPS t-5	EPS t-4	EPS t-3	EPS 1-2	EPS t-1
$log[Rank(Complexity)]_{c,i,t-1} \times MBPc_t > \mu MBP_{Europe-c,t}$	0.0001 (0.030)	-0.002 (0.018)	-0.021 (0.013)	-0.022 (0.016)	-0.026** (0.010)					
$log[Rank(Complexity)]_{c,t,t-1} \times MBPc, t > P_{90}(MBP_{Barope-c,t})$	(0.000)	(0.010)	(0.010)	(0.010)	(0.010)	-0.067***	-0.070***	-0.121***	-0.083***	-0.056
$log[Rank(Complexity)]_{c,t-1} \times NMBPc, t > \mu NMBP_{Barrow-c,t}$	-0.069***	-0.023	0.002	-0.018	-0.021*	(0.014)	(0.013)	(0.027)	(0.019)	(0.016)
og[nank(compressity)]c,t,r=1 × nimb+c,t > µnimb+Europs-c,t	(0.023)	(0.020)	(0.010)	(0.016)	(0.012)					
$log[Rank(Complexity)]_{c,i,t-1} \times NMBPc, t > P_{90}(NMBP_{Europe-c,t})$						-0.008	0.025	-0.023***	-0.025***	-0.026
						(0.030)	(0.050)	(0.007)	(0.006)	(0.006
$log[Rank(Complexity)]_{c,t,t-1} \times TSc, t > \mu TS_{Elempe-c,t}$	0.013 (0.027)	-0.004 (0.018)	0.020 (0.015)	-0.003 (0.013)	0.002					
$\log[Rank(Complexity)]_{c,l,t-1} \times TSc, t > P_{30}(TS_{Europe-c,l})$	(0.027)	(0.018)	(0.015)	(0.013)	(0.011)	-0.042***	-0.021	0.015	0.018	0.037
.og[Hank(Complexity)]c,i,t-1× 1Sc,t > P30(1SEurope-c,t)						(0.014)	(0.018)	(0.015	(0.011)	(0.037
_og[Rank(Complexity)]_c.(-1	0.018***	0.017**	0.011	0.031	0.030***	0.016***	0.016**	0.031***	0.031***	0.030
og[nank(dompony)]2,j=1	(0.007)	(0.007)	(0.010)	(0.008)	(0.008)	(0.006)	(0.006)	(0.006)	(0.005)	(0.005
$MBPc, t > \mu MBP_{Barger-c, t}$	0.009	0.020	0.129	0.122	0.155**	(0.000)	(0.000)	(0.000)	(0.000)	(
and the provest statistically	(0.189)	(0.118)	(0.083)	(0.106)	(0.061)					
$MBPC, t > P_{80}(MBP_{Europe-c,t})_{c,t}$	(,		(,	(,	()	0.424***	0.446***	0.716***	0.457***	0.321
						(0.091)	(0.083)	(0.164)	(0.116)	(0.105
$\text{MBPc,t} > \mu \text{NMBP}_{Europe-c,t}$	0.482***	0.169	-0.033	0.115	0.138"					
	(0.148)	(0.132)	(0.065)	(0.102)	(0.072)					
$IMBPc, t > P_{so}(NMBP_{flurpe-c,t})$						0.138	-0.087	0.128***	0.132***	0.135
						(0.177)	(0.301)	(0.038)	(0.032)	(0.033
$Sc,t > \mu TS_{Europe-c,t}$	-0.071	0.041	-0.136	-0.007	-0.032					
	(0.173)	(0.112)	(0.089)	(0.082)	(0.067)					
$Sc, t > P_{90}(TS_{flarope-c,t})$						0.309***	0.155	-0.094	-0.096	-0.18
						(0.083)	(0.107)	(0.060)	(0.062)	(0.08
.og[GDP per capita]c,t-1	-0.010	-0.006	0.010	0.003	0.002	-0.004	-0.005	0.012*	0.010	0.008
	(0.008)	(0.008)	(0.010)	(0.008)	(0.010)	(0.007)	(0.007)	(0.006)	(0.007)	(0.008
og[Trade Openness] _{c,1-1}	0.023*	0.026*	0.032**	0.026**	0.026***	0.027**	0.029**	0.022**	0.024**	0.024
	(0.012)	(0.014)	(0.013)	(0.011)	(0.010)	(0.011)	(0.012)	(0.010)	(0.011)	(0.011
lorder _{c,i}	-0.013**	-0.015**	-0.012**	-0.015**	-0.014**	-0.014**	-0.015**	-0.012*	-0.015**	-0.01
	(0.006)	(0.006)	(0.006)	(0.006)	(0.007)	(0.007)	(0.006)	(0.006)	(0.006)	(0.00
fioneer _{c,i}	-0.025**	-0.026**	-0.022*	-0.027***	-0.030***	-0.026**	-0.029***	-0.025**	-0.025**	-0.025
	(0.011) 0.001	(0.011) 0.001	(0.011) 0.001	(0.010) 0.001	(0.011) 0.001	(0.010) 0.0001	(0.009) 0.0003	(0.010) 0.002	(0.010) 0.002	(0.01)
irms count _{c,i,t-1}	(0.001)	(0.001)	(0.002)	(0.002)	(0.002)	(0.001)	(0.001)	-0.002	(0.003)	-0.00
Iniversities count _{c./.t-1}	0.001)	0.011	0.002)	0.012	0.012	0.013	0.013	0.002)	0.018	0.01
niversides count _{c,i,t-1}	(0.012)	(0.012)	(0.011)	(0.012)	(0.014	(0.013)	(0.013)	(0.012)	(0.012)	(0.01
og[Green diversification +1]c.r-1	-0.020***	-0.021***	-0.012**	-0.009	-0.013**	-0.019***	-0.019***	-0.013**	-0.011**	-0.01
and framework and a substances of a 1201-1	(0.006)	(0.006)	(0.005)	(0.007)	(0.006)	(0.006)	(0.006)	(0.005)	(0.005)	(0.005
Time FE	1	1	1	4	1	1	1	4	4	1
Diservations	908	908	908	908	908	908	908	908	908	908
Adjusted R ²	0.916	0.913	0.911	0.912	0.910	0.915	0.913	0.912	0.911	0.911

	Dependent variable: percentage of trajectory maturity estimated until take-off (10%)									
			opean average str		Strong sringency in Europe					
	EPS t-5	EPS t-4	EPS t-3	EPS t-2	EPS t-1	EPS t-5	EPS t-4	EPS t-3	EPS t-2	EPS t-1
$Log[Rank(Complexity)]_{c,t,r-1} \times MBPc, t > \mu MBPEurope-c, t$	1.925** (0.785)	0.954 (0.932)	-0.065 (0.802)	-0.261 (0.996)	-0.586 (1.012)					
$eq:log_log_log_log_log_log_log_log_log_log_$						11.627*** (2.273)	10.947*** (1.957)	10.614*** (3.008)	9.297*** (3.508)	5.223* (3.109)
$Log[Rank(Complexity)]_{c,t,t-1} \times NMBPc, t > \muNMBPEurope-c, t$	0.074 (0.453)	0.487 (0.441)	1.334 (1.351)	4.717*** (1.809)	4.514** (1.795)					
$eq:log_log_log_log_log_log_log_log_log_log_$						1.459 (0.969)	2.480*** (0.883)	3.681*** (0.614)	3.474*** (0.687)	3.164*** (0.768)
$\texttt{Log[Rank(Complexity)]}_{c,t,t-1} \times TSc, t > \muTSEurope-c, t$	-0.016 (0.671)	0.679 (0.785)	0.084 (0.552)	0.040 (0.255)	0.027 (0.467)					
$Log[Rank(Complexity)]_{c,t,t-1} \times TSc, t > P_{10}(TSEurope-c, t)$						2.897 (2.923)	3.297 (2.699)	3.292** (1.512)	1.517 (1.749)	1.976 (1.405)
Log[Rank(Complexity)] _{c,l,t-1}	-2.653*** (0.755)	-2.976*** (0.770)	-2.960** (1.210)	-4.947*** (1.569)	-4.866*** (1.779)	-3.059*** (0.746)	-3.133*** (0.677)	-4.065*** (0.933)	-3.958*** (1.038)	-3.637*** (1.085)
MBPc, $t > \mu$ MBPEurope-c, t	-9.359** (4.370)	-4.654 (4.850)	0.588 (4.240)	1.718 (5.373)	4.505 (5.391)	-61.976*** (12.503)	-58.804*** (10.866)	-58.425*** (16.954)	-53.335*** (20.700)	-32.054* (18.956)
MBPc,t > Pao (MBPEurope-c,t)						11.627*** (2.273)	10.947*** (1.957)	10.614*** (3.008)	9.297*** (3.508)	5.223* (3.109)
NMBPc,t > μ NMBPEurope-c,t	0.850 (2.461)	-1.517 (2.487)	-6.734 (7.685)	-28.171*** (10.262)	-26.300*** (9.733)	-5.783 (4.446)	- 10.599*** (4.053)	-15.688*** (3.620)	-15.938*** (3.230)	-15.442*** (3.275)
NMBPc,t > P_{so} (NMBPEurope-c,t)						1.459 (0.969)	2.480*** (0.883)	3.681*** (0.614)	3.474*** (0.687)	3.164*** (0.768)
$TSc,t > \mu TSEurope-c,t$	-0.903 (3.845)	-5.168 (3.955)	-2.217 (2.388)	-1.344 (1.234)	-0.193 (2.167)	-16.056 (15.103)	- 19.489 (14.339)	-21.205	-10.120 (9.848)	-11.768 (7.819)
TSc,t > P ₅₀ (TSEurope-c,t)	(0.0.00)	(0.000)	(2.000)	((41101)	2.897 (2.923)	3.297	3.292** (1.512)	1.517	1.976 (1.405)
RTA _{c.t-1}	0.686**** (0.261)	0.628** (0.276)	0.714** (0.285)	0.719** (0.283)	0.665** (0.291)	0.715**** (0.269)	0.669** (0.268)	0.734**** (0.266)	0.684** (0.275)	0.722*** (0.279)
Firms count _{e,i,r-1}	0.678*** (0.113)	0.707*** (0.102)	0.630*** (0.125)	0.622*** (0.124)	0.650*** (0.135)	0.691*** (0.131)	0.634*** (0.116)	0.600*** (0.125)	0.576*** (0.116)	0.543*** (0.110)
Universities count _{c,i,r-1}	0.321 (0.301)	0.308 (0.293)	0.348 (0.256)	0.447** (0.179)	0.435** (0.212)	0.501** (0.252)	0.585** (0.257)	0.246 (0.237)	0.161 (0.276)	0.225 (0.281)
Trade Openness _{6,1-1}	0.101*** (0.028)	0.108*** (0.028)	0.113*** (0.034)	0.094*** (0.026)	0.093*** (0.025)	0.118*** (0.032)	0.124*** (0.027)	0.116*** (0.029)	0.105*** (0.028)	0.094*** (0.027)
Green diversification _{c,r-1}	0.076 (0.093)	0.063 (0.097)	0.101 (0.093)	0.085 (0.088)	0.047 (0.081)	0.075 (0.101)	-0.006 (0.119)	0.008 (0.095)	0.002 (0.098)	0.056 (0.089)
Country FE	1	1	1	4	V	V	1	1	4	1
Technology FE	~	4	1	4	1	1	4	4	4	~
Year FE	~	4	4	4	1	1	~	~	1	1
Observations	3,349	3,349	3,349	3,349	3,349	3,349	3,349	3,349	3,349	3,349
Adjusted R ²	0.897	0.897	0.897	0.898	0.898	0.898	0.899	0.899	0.898	0.898

Note: SE are Driscoll-Kraay robust. *p<0.1; **p<0.05; ***p<0.01

PARTNERS

università degli studi FIRENZE

OSLO METROPOLITAN UNIVERSITY

European University Institute

Associated partner

www.sustainabilityperformances.eu

fin 🔽

References

References

- [] Andersen, B. (1999). The hunt for s-shaped growth paths in technological innovation: a patent study. Journal of evolutionary economics, 9:487–526.
- [] Antonelli, C., editor (2022). Elgar Encyclopedia on the Economics of Knowledge and Innovation. Elgar encyclopedias in economics and finance series. Edward Elgar Publishing, Northampton.
- [] Balland, P.-A., Boschma, R., Crespo, J., and Rigby, D. L. (2019). Smart specialization policy in the European Union: relatedness, knowledge complexity and regional diversification. *Regional Studies*, 53(9):1252–1268.
- [] Barbieri, N., Ghisetti, C., Gilli, M., Marin, G., and Nicolli, F. (2016). A SURVEY OF THE LITERATURE ON ENVIRONMENTAL INNOVATION BASED ON MAIN PATH ANALYSIS: A SURVEY OF THE LITERATURE ON ENVIRONMENTAL INNOVATION. Journal of Economic Surveys, 30(3):566–623.
- [] Barbieri, N., Marzucchi, A., and Rizzo, U. (2020). Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones? Research Policy, 49(2):103901.
- [] Bento, N., Wilson, C., and Anadon, L. D. (2018). Time to get ready: Conceptualizing the temporal and spatial dynamics of formative phases for energy technologies. Energy Policy, 119:282–293.
- Boonekamp, P. (2006). Actual interaction effects between policy measures for energy efficiency—A qualitative matrix method and quantitative simulation results for households. Energy, 31(14):2848–2873.

] Botta, E. and Koźluk, T. (2014). Measuring environmental policy stringency in oecd countries: A composite index approach.

] Broekel, T. (2019). Using structural diversity to measure the complexity of technologies. PLOS ONE, 14(5):e0216856.

[] Caldarola, B., Mazzilli, D., Napolitano, L., Patelli, A., and Sbardella, A. (2024). Economic complexity and the sustainability transition: A review of data, methods, and literature. Journal of Physics: Complexity.

References ii

-] Castaldi, C. and Drivas, K. (2023). Relatedness, cross-relatedness and regional innovation specializations: An analysis of technology, design, and market activities in europe and the us. Economic Geography, 99(3):253–284.
-] Cherp, A., Vinichenko, V., Tosun, J., Gordon, J. A., and Jewell, J. (2021). National growth dynamics of wind and solar power compared to the growth required for global climate targets. *Nature Energy*, 6(7):742–754.
- [] Cristelli, M., Gabrielli, A., Tacchella, A., Caldarelli, G., and Pietronero, L. (2013). Measuring the Intangibles: A Metrics for the Economic Complexity of Countries and Products. PLoS ONE, 8(8):e70726.
- [] de Cunzo, F., Petri, A., Zaccaria, A., and Sbardella, A. (2022). The trickle down from environmental innovation to productive complexity. Scientific Reports, 12(1):22141.
-] Dechezlepretre, A., Martin, R., Mohnen, M., et al. (2017). Knowledge spillovers from clean and dirty technologies. Technical report, Grantham Research Institute on Climate Change and the Environment.
 -] Fusillo, F. (2019). Are green inventions really more complex. Evidence from European patents.
- [] Galeotti, M., Salini, S., and Verdolini, E. (2020). Measuring environmental policy stringency: Approaches, validity, and impact on environmental innovation and energy efficiency. Energy Policy, 136:111052.
- [] Ghisetti, C. and Quatraro, F. (2017). Green Technologies and Environmental Productivity: A Cross-sectoral Analysis of Direct and Indirect Effects in Italian Regions. Ecological Economics, 132:1–13.
- Hartmann, D., Guevara, M. R., Jara-Figueroa, C., Aristarán, M., and Hidalgo, C. A. (2017). Linking economic complexity, institutions, and income inequality. World development, 93:75–93.
- [] Hasna, Z., Jaumotte, F., Kim, J., Pienknagura, S., and Schwerhoff, G. (2023). Green innovation and diffusion: Policies to accelerate them and expected impact on macroeconomic and firm-level performance. *Staff Discussion Notes*, 2023(008).
- [] Hidalgo, C. A. and Hausmann, R. (2009). The building blocks of economic complexity. Proceedings of the National Academy of Sciences, 106(26):10570–10575.
-] Howlett, M. (2019). Procedural Policy Tools and the Temporal Dimensions of Policy Design: Resilience, Robustness and the Sequencing of Policy Mixes. International Review of Public Policy, 1(1):27–45.

-] Kruse, T., Dechezleprêtre, A., Saffar, R., and Robert, L. (2022). Measuring environmental policy stringency in oecd countries: An update of the oecd composite eps indicator.
-] Li, D., Alkemade, F., Frenken, K., and Heimeriks, G. (2023). Catching up in clean energy technologies: a patent analysis. The Journal of Technology Transfer, 48(2):693–715.
-] Li, D., Heimeriks, G., and Alkemade, F. (2021). Recombinant invention in solar photovoltaic technology: can geographical proximity bridge technological distance? *Regional Studies*, 55(4):605–616.
 -] Mealy, P. and Teytelboym, A. (2022). Economic complexity and the green economy. Research Policy, 51(8):103948.
 -] Mewes, L. and Broekel, T. (2022). Technological complexity and economic growth of regions. Research Policy, 51(8):104156.
-] Napolitano, L., Sbardella, A., Consoli, D., Barbieri, N., and Perruchas, F. (2022). Green innovation and income inequality: A complex system analysis. Structural Change and Economic Dynamics, 63:224–240.

] OECD (2009). OECD Patent Statistics Manual. OECD.

-] Pezzoni, M., Veugelers, R., and Visentin, F. (2022). How fast is this novel technology going to be a hit? Antecedents predicting follow-on inventions. Research Policy, 51(3):104454.
- [] Pezzoni, M., Veugelers, R., and Visentin, F. (2023). Technologies fly on the wings of science. Technical report, United Nations University-Maastricht Economic and Social Research Institute
- Pinheiro, F. L., Balland, P.-A., Boschma, R., and Hartmann, D. (2022). The dark side of the geography of innovation: relatedness, complexity and regional inequality in Europe. *Regional Studies*, pages 1–16.
- [] Pintar, N. and Scherngell, T. (2022). The complex nature of regional knowledge production: Evidence on European regions. Research Policy, 51(8):104170.
- [] Rennings, K. (2000). Redefining innovation eco-innovation research and the contribution from ecological economics. Ecological Economics, 32(2):319–332.
 -] Romero, J. P. and Gramkow, C. (2021). Economic complexity and greenhouse gas emissions. World Development, 139:105317.

] Sbardella, A., Perruchas, F., Napolitano, L., Barbieri, N., and Consoli, D. (2018). Green Technology Fitness. Entropy, 20(10):776.

- [] Sbardella, A., Pugliese, E., and Pietronero, L. (2017). Economic development and wage inequality: A complex system analysis. PloS one, 12(9):e0182774.
- Tacchella, A., Cristelli, M., Caldarelli, G., Gabrielli, A., and Pietronero, L. (2012). A New Metrics for Countries' Fitness and Products' Complexity. Scientific Reports, 2(1):723.
- [] Veefkind, V., Hurtado-Albir, J., Angelucci, S., Karachalios, K., and Thumm, N. (2012). A new epo classification scheme for climate change mitigation technologies. World Patent Information, 34(2):106–111.
- [] Verhoeven, D., Bakker, J., and Veugelers, R. (2016). Measuring technological novelty with patent-based indicators. *Research policy*, 45(3):707–723.
- [] Wiese, C., Larsen, A., and Pade, L.-L. (2018). Interaction effects of energy efficiency policies: a review. Energy Efficiency, 11(8):2137-2156.