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Looking at EU strategic technologies through the lens of patents:  
measuring, impact on productivity, and technological interdependencies 

 
 

    Abstract 
 
This study aims to provide a novel perspective on Europe's innovation landscape by offering an original, data-
driven analysis of EU Strategic Technologies (EUST), assessing firm-level innovation in the EU compared to 
the United States and China, as well as other world regions. The purpose of the research is threefold: i) to 
investigate firms’ innovation in EU strategic technologies (EUST) by mapping patents linked to EUST and to 
isolate the subgroup related to Net-Zero technologies (EUST NZ) through Large Language Models (LLMs) and 
scraping firms’ websites; ii) to estimate the effect of strategic technologies on labour productivity at the firm 
level; iii) to explore technological interdependencies between strategic technologies. 
The findings reveal heterogeneity in firms’ innovation propensity across EU member states. At a global level, 
while the EU has a broad base of innovative firms, it lags in patent volume and intensity compared to its 
competitors. The study demonstrates the positive impact of strategic technology patents on firm-level labor 
productivity, particularly for Net-Zero technologies, reinforcing their strategic importance. 
Additionally, the study identifies key interconnected technologies—such as Cloud Computing, AI, Cybersecurity, 
and Hydrogen Technologies—which act as innovation hubs, crucial for advancing EU industrial policy. These 
findings directly support EU policies, particularly STEP and NZIA, providing empirical evidence for optimizing 
investments, closing the innovation gap, and securing Europe’s technological sovereignty. This research helps 
ensure that EU investments translate into economic growth and global competitiveness. 
 
 
This work is the result of an economic research line on strategic technologies within the framework of 
institutional activities at EU level of the Research Center of the Italian Chambers of Commerce "Guglielmo 
Tagliacarne" (hereinafter: Research Centre “Guglielmo Tagliacarne”). 
 
This paper has been written under the partnership agreement of Research Center “Guglielmo Tagliacarne" 
with the Department of Treasury of the Italian Ministry of Economy and Finance. 

 
The results of the network analysis in this study are the outcome of a joint research group between the 
Research Center "Guglielmo Tagliacarne" and “Universitas Mercatorum” within a broader scientific project on 
network analysis, fitness, and complexity. 
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1. Introduction 

 

Within the current international landscape, increasingly oriented towards a multipolar system dominated by 

a few strong, progressively self-confident actors, the growing relevance of security and technological 

sovereignty has emerged. Given the scope and depth of the challenges, global actors have increasingly 

recognized the interconnections between security, strategic technologies, and economic influence. European 

institutions are no exception, yielding a series of strategic initiatives to tackle competitiveness, ultimately 

striving for Open Strategic Autonomy (Schmitz & Seidl, 2023; Guerrieri & Padoan, 2024), of which 

technological sovereignty and economic security are central targets (European Parliamentary Research 

Service, 2021; European Commission, 2023; Kroll et al. 2023; Edler, 2024).   

 

The Letta report "Much More Than a Market" (Letta report, 2024), in providing an assessment of the European 

Single Market, identified the “freedom of innovation” as a necessary and fundamental addition for the EU to 

leverage its Single Market within the evolving global economy. Mario Draghi’s report on the "Future of 

European competitiveness" (Draghi report, 2024), in taking stock of the growing gap vis-à-vis the US economy, 

further pinpoints Europe's innovative capacity as the root cause of the EU’s weaknesses. Strategic technologies 

are at the heart of EU industrial policies (European Union, 2024a) as they play a pivotal role for technological 

sovereignty, which underlies the economic security and the ambitious environmental sustainability objectives 

of the Union (European Commission, 2021).  

 

The growing gap between the EU and other global actors, particularly the US, has gained prominence in the 

EU policy agenda. Indeed, the EU has struggled with slow productivity growth, declining competitiveness, and 

lagging technological innovation, especially in more complex and high technology intensive technologies (e.g., 

computer technologies, digital communication optics and semiconductors), while it is relatively strong in less 

complex and clean technologies (Di Girolamo et al., 2023; Draghi report, 2024). Moreover, it’s worth noting 

that the EU’s knowledge base of digital technologies is largely placed outside the European Union (Bello et 

al., 2023). Considering that intellectual property is an important metric of innovation capacity (European 

Commission, 2025a), the EU’s share of global patent applications decreased from 30% to 17% between 2000 

and 2021 (European Commission - DG RTD, 2024). 
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Aiming at closing the innovation gap with other global players, the European Union launched a series of 

industrial policies regarding technological innovation. Concerning strategic technologies that are 

fundamental to fulfil EU competitiveness and security ambitions, the European Commission adopted two 

legislative initiatives aimed at fostering their development, namely the Net-Zero Industry Act (European Union, 

2024b) and the Regulation establishing the Strategic Technologies European Platform (hereinafter, STEP) 

(European Union, 2024a). The Net-Zero Industry Act (hereinafter, NZIA) represents the first plan set out to 

boost European net-zero industry by establishing a framework of measures that stimulate the manufacturing 

capacity and the achievement of specific targets by 2040. More recently, the Clean Industrial Deal1 reinforced 

the EU’s strategy on this field by providing clear business incentives for industries to decarbonize within 

Europe. Indeed, it proposes measures aimed at reducing energy prices, stimulating internal demand for clean 

technologies, and mobilizing investments towards clean-tech sectors with the twofold objective of protecting 

energy-intensive sectors from unfair competition and supporting the development of the European clean-tech 

sector. The STEP Regulation is wider in scope, as it aims to promote, develop and safeguard the uptake of 

critical technologies (and their value chains) not only in the clean technology realm (i.e., technologies under 

the NZIA) but also in advanced digital technologies and deep tech innovation. 

 

The present study has manifold objectives. Firstly, given the importance of strategic technologies in EU policy, 

the main goal is to measure firms’ innovation level in EU Strategic Technologies (EUST) – according to STEP 

and NZIA EU Regulations (Regulation EU 2024/795 and Regulation EU 2024/1735, see European 

Commission 2024a, 2024b) – by mapping patents in EUST. The choice of patents is based on at least two 

reasons: i) the recognized importance of patents for the development of strategic technologies, as underlined 

by the European Investments Bank (EIB, 2024); ii) the fact that in the literature, patents have long been used 

as one of the main indicators of innovation, as they cover several aspects of firm’s innovative activity (Hall et 

al., 2001). Having mapped the typologies of patents linked to EUST, we then conduct a cross-country analysis 

both among EU countries, and between the EU and the main global actors (i.e., the US and China). Secondly, 

considering that productivity is one of the main elements of EU industrial policy (Draghi report, 2024), we 

estimate – for the Italian case – the effect of EUST on firms’ labour productivity. Thirdly, since technological 

interdependence has long been acknowledged as a driver of innovation and technological change (Rosenberg, 

1979, recently, Colladon et al., 2025), we investigate the connections between each of the EUST aimed at 

finding the technological interdependencies that are essential for understanding innovation dynamics and 

 
1 The Clean Industrial Deal: A joint roadmap for competitiveness and decarbonization, COM(2025) 85 final, Brussels, 26.2.2025. 
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structural (network) linkages, as progress in one sector is often influenced by developments in related domains. 

This applies in particular to the twin (green and digital) transition as highlighted in a recent study at EU level 

(Bontadini & Meliciani, 2025). 

 

More specifically, the four objectives of the present study are as follows: 

(i) measuring innovation in EUST – according to STEP and NZIA EU Regulations – through the 

identification of patent codes (14-digit of the International Patent Classification) linked to the 

EUST, by leveraging on Large Language Model (LLM) with a robustness check by scraping a 

sample of firms’ websites; 

(ii) cross-country analysis regarding: innovative firms in EUST – according to ownership of patents 

linked to EUST – among EU member States and comparing the EU with other global actors 

(namely the US and China); diffusion (i.e., number) of patents in EUST; 

(iii) estimating the effect of EUST on firms’ labour productivity for the Italian case through 

econometric analysis; 

(iv) investigating the connections between each of the EUST through a network analysis (Bipartite 

Configuration Model (BiCM) Method) by answering the simple question: “Given any particular 

technology (in our case EUST) of interest, how many other technologies (EUST) are connected to 

it? 

All analyses are conducted: i) on all EUST while also specifically highlighting the Net-Zero Strategic 

technologies (Net-Zero EUST), which are part of EUST; ii) at the firm’s level while also focusing on the number 

of patents in EUST. 

 

While a mapping of net-zero technologies has been performed in The net-zero manufacturing industrial 

landscape across the Member States (European Commission - DG ENER, 2024), which identifies the products 

linked to these technologies, and a mapping of clean-tech patents, even though not explicitly in line with the 

Net Zero Industry Act, was conducted by the European Investment Bank (EIB, 2024), a complete study of 

innovation in EUST  – as defined by the EU documents – by mapping the patents related to these technologies 

has not yet been carried out to the best of our knowledge. Notwithstanding the long tradition of studies on the 

impact of patents on various dimensions of firms’ performance, such as productivity (Bloom & Reenen, 2000; 

Bogliacino & Pianta, 2009), it is unclear whether, by focusing only on the firms with patents, a further stronger 

effect on firms’ performance produced by EUST arises. 
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This study provides evidence potentially useful for EU policies in several ways. Firstly, by highlighting the 

heterogeneity of innovation in EUST among member states, as well as empirically measuring the gap of the 

EU with respect to the US and China. Secondly, by empirically demonstrating, even though only for the Italian 

case, how EUST act as catalysts for labour productivity at the firm level by including the key role of Capital 

Market. Finally, by underlining which EUST are more central, performing the highest degrees of 

interdependencies with other EUST.  

In a nutshell, empirical evidence can support impact assessment of industrial policies enhancing technology 

generation in strategic areas. The remainder of the study is structured as follows: Section 2 illustrates the 

institutional background; Section 3 describes the data and method applied to identify the patents linked to 

EUST; Section 4 comments on the results of the diffusion of innovation in EUST across EU countries and 

global competitors, in terms of both firms and number of patents; Section 5 investigates the effect of EUST on 

labour productivity for Italian firms; Section 6 analyzes the technological interdependencies between each of 

the EUST; Section 7 concludes the paper. 

 

2. Institutional background 

 

2.1 Strategic technologies at the root of the new EU policy 

 

The growing gap that has opened up between the EU and other global actors, particularly the US, has gained 

prominence within the European political discourse in the past several months, as emerges from the Draghi 

report on the Future of European Competitiveness (Draghi Report, 2024) and, more recently, the EU 

Competitiveness Compass (European Commission, 2025b; Zettelmeyer, 2025), among other political 

documents. This gap, mainly attributable to lagging advanced technological innovation and labour 

productivity, as well as an ageing population, comes amidst rapid change driven by the twin imperatives of the 

digital and green transition, on the one hand, and increasing geopolitical uncertainty, on the other.  

 

Given the current context, European institutions have risen to the challenge of regaining competitiveness, 

unveiling an increasingly elaborate new policy platform inspired by a renewal of political-economic thinking 

with the Letta and Draghi reports. On April 14, 2024, the Letta report Much More Than a Market assessed the 

European Single Market as unfit for the current international landscape and challenges, particularly in the 
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strategic innovation field. The report thus called for measures to enhance the functioning of the Single Market, 

emphasizing the role of technology and innovation, and encouraging the adoption of the “freedom of 

innovation”. Indeed, only by implementing the proposed “fifth freedom” can the Single Market become a more 

dynamic environment, enabling innovators, accelerating the development and dissemination of new 

technologies, ultimately fostering technological progress and entrepreneurship instead of hindering it. 

Additionally, the report proposed the improvement of the Capital Markets Union, now the Savings and 

Investments Union (European Commission, 2025c), as the necessary condition to finance European innovation 

needs for digital and green transition, which is mainly driven by investments in strategic technologies (i.e., 

deep-tech and Net-Zero technologies), and therefore avoiding the “curse of mature technology” (Buti et al., 

2025).  

 

In this regard, the Draghi report on the Future of European Competitiveness (Draghi report, 2024), presented 

on September 9, 2024, correctly identified the linkages between strategic technologies, innovation and 

competitiveness, also aimed at enhancing security by reducing vulnerabilities and lessening dependencies on 

foreign markets (for an empirical analysis on this issue, see Arjona et al., 2023). 

 

In the vein of the Letta and Draghi reports, the European Commission, on January 29, introduced the 

Competitiveness Compass (European Commission, 2025b), once again underscoring the urgency of 

revitalizing European industrial competitiveness and strengthening the manufacturing capacity needed to 

produce strategic technologies, among other issues. The path therefore appears clear. The growing relevance 

of productivity and technological innovation within the European policy discourse is unmistakable and it 

cannot be separated from the broader geopolitical environment. Indeed, as the international landscape, 

marked by increasing uncertainty and growing geopolitical competition, has evolved the European Union has 

progressively placed greater emphasis on security and sovereignty, marking a significant shift from its 

traditionally open and liberal economic stance. Nonetheless, the EU has adapted its strategic posture. Most 

notably, however, is the fact that, while the conceptualization of policy has evolved – from Open Strategic 

Autonomy to Economic security – technological sovereignty has remained fundamental to this commitment. 

As Europe faces the imperative of securing critical supply chains (Arjona et al., 2024), boosting technological 

progress, and supporting key industries (European Parliamentary Research Service, 2021; European 

Commission, 2023; Kroll et al. 2023; Edler, 2024), technological sovereignty has therefore emerged as critical 

for Europe’s global standing. For this to happen, the European Union must make progress on several fronts, 

among which the development of strategic technologies stands out. 
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2.2 The EU policy on Strategic Technologies: Net Zero Industry Act and STEP 

 

For the reasons discussed above, in 2024 the European Commission adopted two legislative initiatives aimed 

at fostering the development of strategic technologies that are fundamental to fulfilling the EU’s ambitions, 

namely the Net-Zero Industry Act (European Union, 2024b) and the regulation establishing the Strategic 

Technologies European Platform (European Union, 2024a). The NZIA represents the first plan set out to boost 

European net-zero industry by establishing a framework of measures that stimulate the manufacturing 

capacity of net-zero technologies in the EU and the achievement of specific targets by 2040.2 To deliver the 

results for which it has been set out, namely increasing the manufacturing capacity of net-zero technologies, 

the European Commission has proposed the following solutions: streamlining administrative and permit-

granting procedures; the creation of a Net-Zero Europe Platform to facilitate access to finance; the stimulation 

of public demand for these technologies via public procurement procedures and auctions; the introduction of 

regulatory sandboxes for the development, testing and validation of innovative net-zero technologies; and the 

creation of European net-zero industry academies to develop training and education on net-zero technologies. 

Recently, the European Commission has also adopted the Clean Industrial Deal with the objectives of 

decarbonizing energy-intensive sectors and supporting the development of the European clean-tech sectors, 

while preserving competitiveness vis-a vis global competitors. To achieve these purposes, the plan sets out 

clear business incentives for industries to decarbonize within Europe by proposing a set of measures that 

concern the following six business drivers: affordable energy; lead markets; financing; circularity and access to 

materials; global markets and international partnerships and skills. 

 

The Regulation establishing the STEP, despite having the same objective as the NZIA, is wider in scope as it 

aims to promote, develop and safeguard the uptake of critical technologies (and their value chains) not only in 

the clean technology realm (i.e., technologies under the NZIA) but also in the following two sectors: digital 

technologies and deep tech innovation, which include AI, quantum technologies, robotics and autonomous 

systems; and biotechnologies, such as bioinformatics, nanobiotechnologies and process biotechnology 

 
2 The targets are the following: to achieve a manufacturing capacity of net-zero technologies of at least 40% of the EU's annual 
deployment needs, necessary to reach the 2030 climate and energy targets; and to reach 15% of world production of net-zero 
technologies by 2040, being able to achieve the 2040 climate and energy targets (Regulation EU 2024/1735).  
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techniques. To stimulate investments in these technologies, the regulation advances the rationalization of 

eleven EU programs and funds which already exist, and which can be used to finance the uptake of critical 

technologies (these include for example Horizon Europe, the Innovation Fund and the European Defense 

Fund). Furthermore, it introduces two new instruments to attract investments in projects that are in line with 

STEP objectives: the Sovereignty portal,3 i.e. a web page to help project promoters and enterprises find support 

and financing opportunities to develop their STEP investments; and the Sovereignty Seal, granted to projects 

that contribute to the STEP objectives, to help promoters gain visibility and attract public and private 

investments. More recently, the European Commission has also decided to allocate €1.3 billion, through the 

Digital Europe Programme (DIGITAL) work programme for 2025 to 2027, for the deployment of critical 

technologies that are strategically important for the future of Europe and its tech sovereignty, such as Artificial 

Intelligence, cybersecurity and high-performance computing.4 In conclusion, the significance of strategic 

technologies is evident if one considers the nexus between STEP technologies, productivity and strategic 

autonomy (e.g., Edler, 2024). The manufacture of NZIA technologies, for instance, can reduce the EU’s 

dependence on foreign energy sources and lower energy costs and price volatility, ultimately increasing 

competitiveness. Analogously, the diffusion of advanced digital technologies is critical to lifting productivity 

growth across industrial ecosystems.  

 

3. Data and method 

 

3.1 The identification of patents in EU Strategic Technologies 

 

In this section, we explain the method used to identify the patents linked to EU strategic technologies by taking 

into account, on the one hand, the list of strategic technologies as defined by the European Commission (Table 

A1 in Appendix), and on the other hand, the International Patents Classification (IPC) at the maximum level of 

detail (14-digit). To achieve this goal, we leveraged a Large Language Model (LLM) to streamline the 

identification of patent categories corresponding to the European Union Strategic Technologies. Recent 

literature on innovation by using patents recognized that «a newer generation of textual analysis techniques, 

 
3 https://strategic-technologies.europa.eu/investors_en 
4 COMMISSION IMPLEMENTING DECISION of 28.3.2025 on the financing of the Digital Europe Programme and the adoption of the multiannual 
work programme 2025-2027  
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for example based on transformers or large language models (ChatGPT, etc.), could be used to this purpose 

[analysis of patents] in light of their high potential» (Colladon et al., 2025, p. 15). 

 

The analysis proceeded in multiple stages and relied on the content evaluation of several text files, with the 

goal of accurately matching these technologies to their corresponding International Patent Classification (IPC) 

codes at the most granular 14-digit level.  

 

As a preliminary step, we performed data cleaning on the input files – provided as PDF documents from the 

official website of the World Intellectual Property Organization (WIPO) and containing the full IPC 

classification – to remove superfluous information such as page headers, footnotes, page numbers, and any 

extraneous textual elements. This pre-processing was essential to enable the LLM to focus on the core 

classification content, ensuring the extraction of only the semantically relevant patterns while mitigating 

potential misinterpretations caused by inconsistent text formatting. Additionally, we standardized the textual 

representation of the IPC codes, reorganizing entries to achieve a uniform data structure, thereby enhancing 

the efficiency of subsequent automated analyses. 

 

Figure 1A. Workflow for patent category identification using LLM 

 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 

 

By providing the cleaned and standardized classification files to ChatGPT-4 – acknowledged at that time as a 

state-of-the-art multi-modal model for advanced text comprehension and classification tasks and still widely 

considered reliable for large-scale classification (OpenAI et al., 2023) – we adopted prompt-engineering 

strategies recommended by recent research (Brown et al., 2020). Specifically, after loading the complete IPC 

classification and a descriptive guide on how the classification system operates, we iteratively prompted 
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ChatGPT-4 with each target technology and requested the corresponding patent categories. We used the 

OpenAI API to systematically set and adjust hyperparameters such as temperature and top_p, ultimately 

enabling us to optimize the balance between creativity and reliability. In particular, after conducting multiple 

iterative trials to verify the consistency of generated results across separate runs, we settled on a temperature 

of 0.3 and a top_p of 0.9, since this configuration consistently yielded coherent and precise outputs. Although 

fine-tuning the model for domain specificity was initially considered, the infrastructure available in March 

2024 did not yet allow for fully customized fine-tuning of ChatGPT-4; consequently, we employed repeated 

trials and refined prompts to achieve stable response, an approach often referred to as “prompt refinement” 

or “prompt stacking” in advanced prompt-engineering literature (Liu et al., 2023; Wei et al., 2023). Figure 1 

displays the entire process. 
 

In order to verify the completeness and accuracy of the LLM output, we implemented a series of validation 

steps. First, we conducted a manual review of approximately 100 randomly selected IPC codes to detect any 

anomalies or incorrect assignments to the strategic technologies; none were identified. Next, a text-mining 

procedure employing regular expressions on keywords relevant to each strategic technology (for instance, 

using “heat pump” for “Heat pumps and geothermal energy technologies”) confirmed that no IPC codes 

identified by the LLM had been overlooked. Taken together, these measures demonstrated the robustness of 

the LLM’s classifications. 

According to the results of this analysis, we identified 9,781 patents codes (IPC codes 14-digit level) related to 

EUST, of which 2,448 are related to Net-Zero technologies (EUST NZ) 

Figure 1B. Number of 14-digit codes of IPC classification 

 

Note: The total number of codes (79,500) may change because of introduction of new inventions over time. 

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 
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Once patents codes (IPC codes 14-digit level) related to EUST have been mapped, we identified firms with 

patents in EUST by exploiting Moody’s Intellectual Property dataset. We selected, through a boolean search, 

the set companies holding these types of patents. The patents were filtered based on the application filing 

date, including only those with a filing date between 01/01/2004 and 01/01/2024. This time frame was chosen 

to generally exclude patents with a useful life exceeding 20 years, given that industrial property rights for 

invention patents extend for 20 years from the filing date.5 No filters were applied to patent offices, so the 

selected patents may have been filed at any patent office worldwide. The dataset therefore includes the total 

patents owned directly by companies. 

 

3.2 Robustness check: Quality survey on the ChatGPT patent mapping process 

 

We further investigated the accuracy of the ChatGPT patent mapping process by observing a sample of 

websites selected from the list of 5,000 business units in the reference population. Specifically, we selected 

URLs (Uniform Resource Locator) and interactively observed the content of the website related to each 

sampled URL, searching for the presence of EU Strategic Technologies - EUST (Table A1 in Appendix). 

 

We followed a protocol for detecting the presence of EUST. Assuming that each website has a layered 

structure, we determined the depth of the website beyond which the analysis will not be performed. We also 

did not search for the information on the linked site.  

 

We apply these rules because the URL sample will be a ground truth sample for a future automated analysis 

of the full set of 5,000 business units. In this case, we perform a massive web scraping and make a prediction 

of technology presence using a supervised approach based on the ground truth data sample. In order to limit 

the computational complexity of the scraping process, automatic scraping is performed using the protocol 

described above. 

 

 
5 Industrial property rights last 20 years from the filing date for invention patents, 20 years from the grant date for plant variety rights, and 10 years 
from the filing date for utility models, starting from the filing date. 
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We selected the URLs according to a stratified simple random sampling without replacement, with strata 

given by Italian macro-regions (GEO: North, Centre, South and Islands), size classes of employees (SIZE: 5-

49, 50-249, 250 or more), adopted type of technology (TYPE: EUST, EUST NZ). 

 

The stratum sample allocation oversampled the larger economic units (strata with 50-249, 250 or more 

employees) with respect to the proportional population size allocation. The sample includes 627 URLs, but 52 

URLs were not operational (incorrect URLs or URLs that did not correspond to the website of the business 

unit). Of the 575 sites examined, 544 were related to EUST, while 31 were not. 

 

We apply a calibration estimator (Deville and Sarndäl, 1992) for producing the estimates. The calibration 

constraints are the marginal distributions of the number of business units by GEO, SIZE and TYPE. The 

calibration step also adjusted the sampling weights for non-operational URLs. Table 1 shows the relative 

frequencies of business units related to EU Strategic Technologies, and also the specific Net-Zero Strategic 

Technologies. 

 

Table 1. Estimated relative frequencies of business units related to EU Strategic Technologies 

Variable Category Estimate 
Confidence Interval 
(95%) Lowerbound 

Confidence Interval (95%) 
Upperbound 

GEO 
North 0.98 0.97 0.99 
Center 0.91 0.86 0.96 
South 0.84 0.75 0.92 

SIZE 
0-49 0.95 0.93 0.97 
50-249 0.95 0.92 0.98 
250+ 0.97 0.94 1.00 

TYPE 
EUST NZ 0.98 0.96 1.00 
EUST 0.94 0.92 0.96 

Italy 0.95 0.95 0.94 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 

 
 
 
 

4. Results 

In this paragraph we show descriptive statistics concerning firms with patents in EU Strategic technologies 

(EUST), and the related numbers of patents – also highlighting the part referred to the Net-Zero ones (EUST 

NZ) – among both World macro regions and EU member countries. All data refer to the limited companies. 
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Specifically, two indicators were developed to capture the degree and the dimensions of innovation within the 

entrepreneurial system: i) the first one is Firms’ propensity, which corresponds to the number of firms with 

patents in EUST (and EUST NZ) per 10,000 firms, and it reflects the extent to which innovation is diffused 

among firms (i.e., only a few or many firms); ii) the second one is Patent intensity, which measures the number 

of patents in EUST (and EUST NZ) per 100,000 inhabitants, therefore serving as a proxy for the intensity of 

innovation (i.e., few or many patents). These two indicators can provide relevant insights for policy design, as 

they can shed light onto the trade-offs between supporting wider adoption of innovation across firms and 

fostering innovation intensity.  

 

4.1 EU in the world competition 

 

The data (Table 2, Maps 1-3, and Table A2 and Maps A1-A3 in Appendix) delivers some unexpected results. 

Whereas China dominates the rankings of the number of firms which own patents for both EU Strategic 

Technologies (EUST) and EU Strategic Net-Zero Technologies (EUST NZ), the US and the EU alternate 

between second and third depending on the category. Indeed, while the US outperforms the EU with regards 

to EUST, it lags behind the EU in terms of EUST NZ. The results differ if one takes into account the number of 

enterprises in the economy. When considering firms' propensity to own patents (measured as the number of 

firms with patents either in EUST or EUST NZ per 10,000 firms), Japan takes the lead (110 EUST and 37 EUST 

NZ), with China coming in second (100 and 39, respectively), Canada in third (24 and 7) and the US in fourth 

(22 and 5). Surprisingly, among these regions, the EU 27 come in last for strategic technologies (21) and the US 

drops out of the top five for Net Zero strategic technologies (5). 

 

A similar trend appears when comparing the total number of patents and patent intensity (measured as the 

number of patents per 100,000 inhabitants). Again, while China tops the rankings in absolute terms, it is Japan 

that registers the highest patent intensity (2,269 patents in EUST and 422 patents in EUST NZ), followed by 

the US (1,002 and 110 patents respectively) and the EU (385 and 78). Focusing on a comparison with the United 

States, we can observe that the European Union shows a certain proximity in terms of firms’ propensity to 

engage in strategic technologies, and an even higher propensity when it comes to firms with patents in Net-

Zero technologies. However, the EU suffers from a significant gap in terms of the overall number of patents – 

both in absolute and relative terms. In contrast, when compared to China, the EU’s position is reversed: there 

is a disadvantage in terms of firms’ propensity, but an advantage in terms of patent intensity – this holds true 

for both EUST and EUST NZ. 
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Table 2. Rankings of the EU, the US, China and other world regions for firms* and patents 
 

 Firms spread Firms’ propensity  Patents spread Patent intensity 

Ranking N. of firms 
Firms with 
patents per 

10,000 firms 
 N. of patents 

N. of patents per 
100,000 

inhabitants 
 with reference to EUST 
1 China Japan  China Japan 
2 USA China  USA USA 
3 EU 27 Canada  Japan EU 27 
4 Japan USA  EU 27 China 
5 Russia EU 27  Canada Canada 
 with reference to EUST NZ 
1 China China  China Japan 
2 EU 27 Japan  Japan USA 
3 USA Russia  USA EU 27 
4 Japan EU 27  EU 27 China 
5 Russia Canada  Canada Canada 

* All data refers to the limited companies. 
Note: The ranking considers EU, USA, China, and other main world countries. 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 

 
 
 
 
Map 1. EUST firms (number) 
 

 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 
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Map 2. EUST firms per 10,000 firms 

 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 

 
 
 
 
 
 
Map 3. EUST patents per 100,000 inhabitants 
 

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 
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4.2 Inside the EU: a cross-country analysis among EU countries 

 

The results (Table 3, Maps 4-6, and Table A3 and Maps A4-A6 in Appendix), and also provide valuable insights 

into the innovative ecosystem within the European Union and its member states. While the larger economies 

– Germany, Italy, and France – tend to lead in terms of the number of strategic firms, Germany, France, and 

Sweden take the lead when it comes to the number of patents in strategic technologies. This could also be the 

result of firm size since larger firms are more likely to get patents. In Germany and Sweden, for instance, the 

firm’s average size is higher than Italy (respectively, 12.2 and 4.8 vs 4.2 employees per enterprise) that falls in 

7th place in terms of number of patents.  

 

However, a different picture emerges when adjusting for economic and population size. In this case, Austria 

and Finland, along with Germany, rank highest in firms’ innovation propensity, while Finland, Sweden, and 

Ireland stand out for their patent intensity. In this case, the smaller size of a country could amplify the intensity 

of innovation (indeed, among the first six countries in terms of patent intensity, only the Netherlands has a 

large population, i.e., in top-ten EU countries).  

 

Once again, similar patterns emerge with regards to Net Zero strategic technologies. While Germany, France, 

and Italy report the highest number of firms owning patents – and Germany, France, and the Netherlands 

account for the largest patent volumes – it is the smaller, yet technologically advanced economies that exhibit 

higher firm-level innovation propensity and patent intensity. Notably, Denmark, Luxembourg, and the 

Netherlands stand out for their cutting-edge patent ecosystems, while Germany, Austria, and Finland lead in 

terms of the share of firms engaged in Net Zero strategic technologies (EUST NZ). 
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Table 3. Rankings of Member States of the EU, data on firms* and patents for EU Strategic technologies 
 

 Firms Spread Firms’ Propensity  Patents Spread Patent Intensity 

Ranking N. of firms 
Firms with patents 

per 10,000 firms 
 N. of Patents 

N. of Patents per 
100,000 

inhabitants 
1 Germany Germany   Germany Finland 
2 Italy Austria   France Sweden 
3 France Finland   Sweden Ireland 
4 Netherlands Italy   Netherlands Luxembourg 
5 Spain Ireland   Finland Netherlands 
6 Sweden Denmark   Ireland Denmark 
7 Finland Sweden   Italy Germany 
8 Poland Luxembourg   Denmark France 
9 Austria Malta   Spain Austria 
10 Belgium Poland   Austria Belgium 
11 Denmark Slovenia   Belgium Malta 
12 Czech Republic Netherlands   Poland Cyprus 
13 Ireland Belgium   Luxembourg Italy 
14 Bulgaria France   Czech Republic Spain 
15 Romania Czech Republic   Portugal Estonia 
16 Hungary Cyprus   Cyprus Lithuania 
17 Portugal Spain   Hungary Czech Republic 
18 Luxembourg Greece   Slovakia Slovenia 
19 Slovakia Lithuania   Romania Slovakia 
20 Slovenia Hungary   Lithuania Poland 
21 Estonia Bulgaria   Malta Portugal 
22 Cyprus Slovakia   Bulgaria Latvia 
23 Greece Croatia   Slovenia Hungary 
24 Lithuania Latvia   Estonia Bulgaria 
25 Croatia Estonia   Greece Croatia 
26 Latvia Portugal   Latvia Romania 
27 Malta Romania   Croatia Greece 

* All data refers to the limited companies. 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 
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Table 4. Rankings of Member States of the EU, data on firms* and patents for EU Net Zero Strategic technologies 

 Firms Spread Firms’ Propensity  Patents Spread Patent Intensity 

Ranking N. of firms 
Firms with patents 

per 10,000 firms 
 N. of Patents 

N. of Patents per 
100,000 

inhabitants 
1 Germany Germany   Germany Denmark 
2 France Austria   France Luxembourg 
3 Italy Finland   Netherlands Netherlands 
4 Netherlands Denmark   Denmark Finland 
5 Spain Italy   Italy Germany 
6 Sweden Ireland   Spain France 
7 Poland Poland   Belgium Sweden 
8 Denmark Sweden   Sweden Belgium 
9 Austria Netherlands   Finland Austria 
10 Finland Luxembourg   Austria Ireland 
11 Belgium Czech Republic   Poland Spain 
12 Czech Republic Slovenia   Ireland Italy 
13 Ireland Belgium   Czech Republic Estonia 
14 Bulgaria France   Luxembourg Cyprus 
15 Hungary Spain   Portugal Czech Republic 
16 Romania Malta   Hungary Slovenia 
17 Slovakia Greece   Romania Poland 
18 Luxembourg Hungary   Slovakia Latvia 
19 Portugal Cyprus   Slovenia Lithuania 
20 Slovenia Slovakia   Lithuania Portugal 
21 Estonia Lithuania   Estonia Slovakia 
22 Greece Estonia   Cyprus Malta 
23 Cyprus Latvia   Bulgaria Hungary 
24 Lithuania Bulgaria   Latvia Croatia 
25 Croatia Croatia   Croatia Bulgaria 
26 Latvia Portugal   Greece Romania 
27 Malta Romania   Malta Greece 

 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 
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Map 4. EUST firms (number) 

 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 

 

Map 5. EUST firms per 10,000 firms 

 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 
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Map 6. EUST patents per 100,000 inhabitants 

 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 

 

4.3. Comparing Strategic technologies with Capital Market development: a cross-country analysis 
 

The evidence from Figure 2 confirms the link between the development of a country’s capital market and its 

degree of innovation. When investigating the number of patents in strategic technologies per 100,000 

inhabitants with a measure of capital market sophistication – measured here as the share of listed shares and 

debt securities on total liabilities – it is clear that as the latter improves, the number of patents increase, with a 

correlation of 0,77. Additionally, the countries with the highest firm propensity and patent intensity all exhibit 

highly developed capital markets, further demonstrating the importance of closing the investment gap to foster 

investment in innovation (Buti et al., 2025). 
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Figure 2. EU Patents in Strategic technologies and EU capital market development in EU countries 

 

Note: Figure reports the name of the main countries, while the points refer to all countries.   
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne and Eurostat 
 

 

4.4. Comparing Strategic technologies with R&D: a cross-country analysis 
 
Finally, when investigating the number of patents in EU strategic technologies and R&D within the business 

sector (% of GDP), clear global patterns emerge, especially regarding China, the European Union, and the 

United States. While American companies spend more than the global average on R&D (measured for the 

period 2019-2023) to obtain more EUST patents per 100,000 inhabitants than the global mean, other actors 

fare worse in terms of patent intensity. Among them, there are both the EU and China, although the latter 

spends more than the former on R&D, as shown in Figure 3. 
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Figure 3. Patents in EU Strategic technologies and R&D in the business sector in EU countries and major 
global countries 

 
 

Note: a) R&D % on GDP is average for the 2019-2023 period. b) Figure reports the name of the main countries, while the points refer to all 
countries.   
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 

 

5. The impact of EU strategic technologies on firm’s productivity: the Italian case 

In this section, we investigate the effect of innovation in EU Strategic Technologies (EUST) on firms’ labour 

productivity among Italian enterprises. Specifically, by focusing on limited companies, we contrast firms with 

patents in EU Strategic Technologies with firms with patents unrelated to EUST. We only consider firms with 

patents to better isolate the “strategic technologies effect”, and also because in literature on innovation, 

patents are acknowledged as one of the best indicators of innovation (Colladon et al., 2025). 

 

We measured labour productivity in terms of value added per employee – according to balance sheet data – 

with reference to the 2014-23 period. Concerning the latter aspect, we take into account a reference period of 

more than one year to capture structural relationships between the key variables of interest, thus neutralizing 

the business cycle effect. With regards to the dataset, we refer to the one built in this study (see Section 3): in 

particular, the analyses rely on the limited Italian companies with available balance sheet data for all years of 

the period 2014-2023. 
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We estimated the impact of EU strategic technologies by applying several econometric methods to have more 

robust results as well as to address the causality effect. We applied a large set of independent variables – 

besides our main variable of interest – to control for potentially confounding effects of various firm’s 

characteristics that may influence labour productivity. The description of all variables is reported in Table 5. 

 

Table 5. Variables description 

Variables Type Description 
Dependent variables   
LPmean Continuous Labour productivity (value added per employee), ten-year mean value for 

the period 2014-23, in log terms (source: elaboration on Moody’s data) 
 
Main independent variables 
EUST Binary 1 = firm with patents in EU Strategic Technologies; 0 = otherwise (source: 

elaboration on Moody’s data) 
EUST_NZ Binary 1 = firm with patents EU Strategic Net-Zero Technologies; 0 = otherwise 

(source: elaboration on Moody’s data) 
   
EUST_012 Categorical 0 = firm with patents in non EU-Strategic Technologies (EUST_no); 1= firm 

with patents in non Net-Zero EU Strategic Technologies (EUST_noNZ); 2= 
firm with Patents in EU Strategic Technologies Net-Zero (EUST_NZ) (source: 
elaboration on Moody’s data) 

Control variables   
Size Continuous Number of employees (source: elaboration on ISTAT data) 
Industry Dummies 1 = if the firm belongs to a n-sector (2-digit NACE rev.2 classification); 0 = 

otherwise (source: elaboration on ISTAT data) 
Localization Dummies 1 = if the firm belongs to a n-NUTS 2; 0 = otherwise. 
Age Discrete Number of years since inception (source: elaboration on ISTAT data) 
Human capital Continuous Share of graduates in STEM disciplines on total employees  
Export Binary 1 = if the firms exports; 0 = otherwise (source: elaboration on ISTAT data) 
Foreign Binary 1 = if the firm is a foreign-invested firm; 0 = otherwise (source: elaboration on 

ISTAT data) 
LP_initial Continuous Labour productivity (value added per employee) in 2013 (source: elaboration on 

Moody’s) 
Instruments   
R&D Continuous R&D asset value per employee (euro) (source: elaboration on Moody’s data) 
High-tech sector Dummy 1 = if the firm belongs to a high- / medium-high technology intensive 

sector; 0 = otherwise (source: elaboration on OECD/Eurostat data) 
Capital market Dummy 1 = if the firm is a listed company; 0 = otherwise (source: elaboration on Moody’s 

data) 
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5.1. Econometric strategy 

 

5.1.1 Cross section analysis: OLS regression 

Since all independent variables are time-invariant, we conduct a cross-section analysis6 by applying a log-

linear model by Ordinary Least Square (OLS) regression.  

Analytically: 

 

𝑙𝑛𝐿𝑃𝑚𝑒𝑎𝑛) = 	𝛽- + 𝛽/𝐸𝑈𝑆𝑇) + 𝛽4𝐶) + 𝜀)       [1] 

 

where, LPmean is the ten-year mean value for the period 2014-23 of the labour productivity – expressed in log 

terms – of the firm i; EUST is a binary variable taking value 1 if the firm holds patents in EU Strategic 

Technologies; C is the vector of controls for each firm i; and 𝜀i is the error term. 

 

5.1.2 Deepening the causality  

We address the issue of causality through three approaches. The first one is the Instrumental Variables (IV) 

method (Angrist et al., 1996; Wooldridge, 2010); the second one relies on a weighted regression after the 

nearest-neighbour matching (Abadie & Imbens, 2006, 2011) by contrasting treated firms with untreated firms 

of a control group; and the third one, partly linked to the second, concerns the reweighting on propensity score 

inverse probability (seminal paper by Rosembaum & Rubin, 1983).   

 

5.1.2.1 Instrumental variables approach 

Although our estimations control for several factors, we check for the presence of potential endogeneity of 

innovation in EU Strategic Technologies (i.e., the variable EUST) by investigating the possible presence of 

exogenous variables that affect firms’ labour productivity through the endogenous variable EUST. In other 

words, EUST may also depend on other unobservable-to-the-analyst-factors, that is, factors correlated with 

the error term.   

 

In line with the literature, we applied the method of instrumental variables approach by 2SLS (Wooldridge, 

2010). The advantage of the IV approach is its capacity to restore the causal parameter consistency, also under 

 
6 Since the dependent variable could be time-variant, we also carried out a panel analysis (random effects model) finding similar 
results in terms of both magnitude and statistical significance. 
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selection on unobservables (Angrist & Krueger, 2001). Thus, by using the Two Stage Least Squares (2SLS) 

estimator, we modelled the IV approach. 

The structural equation (second-stage) is the Equation [1] reported above. We considered a set of instrumental 

variables Zi correlated with the potentially endogenous explanatory variable (EUST), but uncorrelated with the 

stochastic error e in the structural equation [1]. 

 

The effects of the instruments on the endogenous variable are measured by the parameter 𝛽4/ in the auxiliary 

regression (first-stage): 
 

𝐸𝑈𝑆𝑇	) = 	𝛽- + 𝛽4/𝑍) + 𝛽44𝐶) + µ)       [2] 

 

where EUST is the potentially endogenous explanatory variable in Equation [1], Zi is the instrumental variable, 

and µ is the stochastic error term. 

 

After estimating the first-stage regression (Equation 2), in the second-stage equation EUST is replaced by its 

value estimated in the first-stage – i.e. in the Equation [2]. To test if EUST is endogenous (test of endogeneity), 

we used the Wu-Hausman test: if it is significant, we reject the null hypothesis that the variable is exogenous, 

hence making it endogenous. Concerning the validity of the instruments, we perform two checks. First, we 

checked if they are correlated with the endogenous variable (instruments relevance) by calculating an F-test 

for the significance of the instruments’ coefficients: a value above 10 means that the instruments are not weak 

(Stock et al., 2002, Stock & Yogo, 2005). Second, we check if they are exogenous, namely uncorrelated with 

the structural error term e in the structural equation [1] by performing an overidentification restriction check 

by applying the Sargan test: an insignificant value means that we do not reject the null hypothesis that the 

instruments are exogenous. 

 

5.1.2.2 Regression after propensity score matching and Inverse Probability Weighting 

We estimated the effects of EU Strategic Technologies on firms’ labour productivity also through regression 

after matching. Matching is a common statistical method (Stuart, 2010) for estimating treatment effects, and 

even more in economic and social studies (Cliendo & Kopeinig, 2008). 

 

In our case, treated firms are the ones holding patents in EU Strategic Technologies (EUST firms). However, 

since this treatment isn’t randomly assigned depending on several variables, and is instead probably 



© M. Gentile, A. Bumbea, D. Giannini, A. Giuffrida,     LEAP          Working Paper 3/2025      May 12, 2025 
L. Macigno, D. Mariz, A. Mazzitelli, M. Pini, P.Righi,  
A. Rinaldi, F. Salate Santone  
 

 

27 
 

correlated with our outcome (labour productivity), we have to build a control group of firms (untreated) having 

similar observable characteristics to those of the treatment group (EUST firms) while lacking, of course, patents 

in EU Strategic Technologies (non-EUST firms). 

 

To identify the firms of the control group we use the nearest-neighbour matching (Abadie & Imbens, 2006, 

2011), by considering nearest neighbour with replacement and a fixed number of units. 

 

We identified the untreated companies (non-EUST firms) of the control group through the propensity score 

(Rosenbaum & Rubin 1983, 1985) that is the estimated probability of being treated given a set of observable 

characteristics at the firm level (of both treated and untreated units). Specifically, we estimate the probability 

of being a firm with patents in EU Strategic Technologies as a function of the following firms’ characteristics: 

technology intensity and knowledge intensity according to OECD/EUROSTAT classification, size, 

geographical localization, firm age, graduated employees, governance, R&D, if firms is listed firms, total asset 

(description of these variables are reported in Table A4 in Appendix). The Probit model was used to estimate 

the propensity score (results of the probit are reported in Table A5 in Appendix). 

 

Based on the propensity score, we match treated firms up to a maximum of 2 nearest neighbours non-EUST 

firms. If on the one hand a smaller number of selected nearest neighbours reduces the expected bias, on the 

other, it can worsen the efficiency of the estimates (Caliendo & Kopeinig, 2008). Moreover, to select the firms 

most similar to the treated, we also set a caliper of 0.15: this allows us to exclude the firms that are not 

sufficiently similar (Cocharan & Rubin, 1973) (i.e. those with a distance in terms of the estimated probability of 

being treated compared to the treated firm greater than 15%) even though they fall in the control group of the 

2 nearest neighbours. We imposed common support which excluded treatment observations whose pscore 

was higher than the maximum or lower than the minimum pscore of the controls (for more details about all 

issues explained above, see Cerulli, 2022).    

 

After matching, we evaluated if treated and control group were similar in observable variables (balancing). 

Results show that for all variables there are no statistically significant differences (Table A6 in Appendix; Figure 

A1 in Appendix also reports the propensity score density before and after matching). 
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Finally, we run the cross-sectional regression on the subsample of treated and matched control firms by 

applying the following OLS: 

 

𝑙𝑛𝐿𝑃𝑚𝑒𝑎𝑛) = 	𝛽- + 𝛽/𝐸𝑈𝑆𝑇) + 𝜀)       [3] 

 

As a robustness check, we also apply the inverse probability weighting (Horvitz & Thompson, 1952; 

Rosembaum & Rubin, 1983; Wooldridge, 2002) according to which: 

- for treated units the inclusion probability is equal to the propensity score: p(D=1 | x) 

- for untreated units the inclusion probability is equal to: p(D=0 | x) = 1  ̶  p(D=1 | x) 

where x is the vector of observable exogenous confounding variables assumed to drive the nonrandom 

assignment into treatment (Cerulli, 2022 p.102-107).  

 

 

5.2. Results 

 

5.2.1 Baseline results 

The results of the cross-section analysis show that patents in EUST have a positive impact on labour 

productivity. Indeed, firms with patents in EU Strategic Technologies (EUST) have a statistically significant 

(p<0.01) 3.8% higher labour productivity compared to the firms with patents which don't correspond to EUST. 

(Table 6, Model A). When considering exclusively firms with patents in Net-Zero technologies (EUST_NZ) – a 

subset of EU strategic technologies – we discover that their labour productivity is significantly (p<0.01) higher 

by 7.3%, compared to other firms (Table 6, Model B). 
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Table 6. OLS regression 

  lnLPmean lnLPmean lnLPmean 

  (A) (B) (C) 
EUST  0.038***   

  (0.011)   
EUST_NZ   0.073***  

   (0.018)  
EUST_012     

EUST_noNZ    0.022* 

    (0.013) 
EUST_NZ    0.077*** 

    (0.019) 
+ controls     
Observations  8,669 8,669 8,669 

Note: i) the dependent variable is reported at the top of the column. EUST_012; ii) EUST_no as reference category (see Table 5 
Variables description); iii) standard errors in parentheses. 
*** p < 0.01, ** p < 0.05, * p < 0.1. 

 

These results are further confirmed when we consider simultaneously Net-Zero and non-Net-Zero strategic 

technologies through a categorical variable (EUST_012) taking value 0 if the firm has patents in non EUST, 

value 1 if the firm has patents in EUST but not in Net-Zero technologies, and value 2 if the firm has patents 

specifically in Net-Zero EUST (see Table 5 Variables description). Indeed, we find that the effect of strategic 

technologies is most pronounced in the case of Net Zero EUST. In particular, by setting the non-EUST firms 

as a reference category, those with patents in non-Net-Zero EUST have a 2.2% higher labour productivity 

(p<0.10), while firms with patents in Net-Zero EUST demonstrate an even greater 7.7% increase (Table 6, Model 

C and Figure 3), however with a higher degree of statistical significance (p<0.01). 
 

Figure 3. Percentage difference of labour productivity of firms with patents in EU Strategic Technologies (EUST) 
compared to firms with patents in non-EU Strategic technologies (EUST_no) 
 

A): EUST vs EUST_no B): EUST_noNZ and EUST_NZ vs EUST_no 

  
Note: A) refers to results in Table 6 column A; B) refers to results in Table 6 column C.  
*** p < 0.01, ** p < 0.05, * p < 0.1.     
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5.2.2 Addressing the causality 

The findings explained above are also validated by further analyses that tackle the issue of causality. By 

comparing the firms with patents in EUST (treated) with a control group of firms having the same 

characteristics (untreated matched) – through regression after matching – we find a positive and statistically 

significant effect of Strategic Technologies (EUST) that is even greater in the case of Net-Zero Strategic 

Technologies (EUST_NZ) (Table 7, Model A, B). This was also achieved by using the inverse probability 

weighting technique (Table 7, Model D, E). 

 
Table 7. OLS regression after Propensity Score Matching (PSM) and Inverse Probability Weighting (IPW) 

 OLS after PSM  IPW 
 lnLPmean lnLPmean  lnLPmean lnLPmean 

 (A) (B)  (D) (E) 
EUST 0.037**   0.026**  

 (0.018)   (0.013)  
EUST_NZ  0.129***   0.084*** 

  (0.025)   (0.031) 
      
+ controls      
Observations 3,863 3,863  8,667 8,663 

Note: i) the dependent variable is reported at the top of the column; ii) standard errors in parentheses. 
*** p < 0.01, ** p < 0.05, * p < 0.1. 

 

Even more interesting results arise from the instrumental variables estimation. In this case, we address the 

causality issue by considering innovation in EU Strategic Technologies (EUST) endogenous by depending on 

other factors (exogenous variables). More specifically, considering EUST endogenous (instrumented variable), 

we can argue that the probability of holding patents in EU Strategic Technologies is likely to be determined 

by other factors, that are the instruments. We identify three instruments. The first one is R&D (R&D asset value 

per employee) in line with the literature about R&D as an important input of innovation (recently, Dong et al. 

2024; on the specific case of Italian firms, Hall et al. 2013).  

 

The second one refers to the capital market, captured here by a binary variable (Capital market) taking a value 

of one if the firm is a listed company. This stems from the growing importance of the capital market, especially 

the Capital Markets Union in the case of the EU, in supporting innovation, particularly in terms of innovation 

at the frontier (as referenced in Letta’s Report, Chapter 2, 2024, and Draghi Report, Part B, Section 2, Chapters 

1 and 3, 2024). The third variable concerns the technological intensity at the sector level by assuming that 

operating in a higher technological intensity sector may affect the probability of investing in EU strategic 
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technologies. Basically, we constructed a variable (High-tech sector) taking value 1 if the firm belongs to a high 

or medium-high technological intensity sector.7 

 

The results of the IV estimation confirm the positive and statistically significant (p<0.01) effect of EUST on 

labour productivity (Table 8, column B), and the larger effect of EUST_NZ (Table 8, column D). Interestingly, 

looking at the first stage, we find a positive, and statistically significant (p<0.01) relationship between each 

instrument (R&D, High-Tech, Capital market) and innovation in EU Strategic Technologies (EUST). 

Figure 4. Framework of the IV estimation  
 

 
 

Note: the figure displays the sign and the related statistical significance of the coefficient (details in Table 8). 
*** p < 0.01, ** p < 0.05, * p < 0.1.     

 

This demonstrates the validity of instruments: more technically, F statistics for the instruments’ relevance is 

over 10 (43.435, p<0.01, Table 8), indicating that the instruments are not weak.  

With regards to the endogeneity of the instrumented variable, the Wu-Hausmann test rejects at the 5% the 

null hypotheses of exogeneity (4.284, p<0.05, Table 8), ultimately proving that EUST is endogenous. Finally, 

concerning the exogeneity of the instruments, the Sargan test is not significant (0.750, p>0.10, Table 8). We 

can thus assume the instruments to be exogenous. These tests are further confirmed in the IV estimation 

focusing on the EUST_NZ as the main independent variable (Table 8, columns C-D).  

 

 

 

 

 
7 According to the OECD/EUROSTAT taxonomy. Specifically (in parentheses 2-digit level of Nace Rev.2): Manufacture of basic 
pharmaceutical products and pharmaceutical preparations (21); Manufacture of computer, electronic and optical products (26); 
Manufacture of chemicals and chemical products (20); Manufacture of electrical equipment (27); Manufacture of machinery and 
equipment n.e.c. (28); Manufacture of motor vehicles, trailers and semi-trailers (29); Manufacture of other transport equipment (30).  
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Table 8. Instrumental variables approach 

 IV-2SLS IV-2SLS 
 1st Stage 2nd Stage  1st Stage 2nd Stage 
 EUST lnLPmean  EUST_NZ lnLPmean 

 (A) (B)  (C) (D) 
EUST  0.217**    

  (0.095)    
EUST_NZ     0.366** 

     (0.168) 
+ controls      
      
#R&D 0.002***   0.001***  
 (0.000)   (0.000)  
#High Tech sector 0.082***   0.036***  
 (0.010)   (0.006)  
#Capital market 0.217***   0.166***  
 (0.035)   (0.021)  
      
Endogeneity: Wu Hausmann (F-test) 4.284**  2.845* 
Instruments relevance: F-test 43.435***  37.910*** 
Instruments exogeneity: Sargan test Chi2 0.750  1.290 
Observations 8,669  8,669 

Note: i) the dependent variable is reported at the top of the column; ii) standard errors in parentheses; iii) the symbol # indicates 
the instrumental variable; iv) the table reports also the following tests: Endogeneity test Wu-Hausman (if we reject the Hypothesis 
the variable EUST and EUST_NZ are endogenous); F-test for instruments relevance (statistical significant with a F-value > 10 
means to reject the hypothesis of irrelevance of the instrumental variables); Sargan test Chi2 for the overidentification restriction 
(no statistical significant means to not reject the hypothesis of exogeneity of the instrumental variables). *** p < 0.01, ** p < 0.05, 
* p < 0.1.     

 

Finally, it is important to underline that the instrumental variables choice might be problematic in terms of 

their exclusion restrictions because the instruments (R&D, High-tech sector, Capital market) may be highly 

correlated with the dependent variable (lnLPmean) of the selection model. In Table 9 we show that the 

variables related to the exclusion restriction (R&D, High-tech sector, Capital market) are significant at the first 

stage and loss significance at the second stage in the selection model. 
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Table 9. Check on exclusion restriction 

 
First stage 
(EUST) 

Second stage 
Selection 
model 
(lnLPmean) 

 (A) (B) 
R&D 0.002*** 0.001 
 (0.000) (0.000) 
High-Tech sector 0.082*** 0.014 
 (0.010) (0.010) 
Capital market 0.217*** 0.032 
 (0.035) (0.038) 
+ other variables   
   
Observations 8,669 8,669 

Note: i) the table displays coefficients; ii) standard errors in parentheses. Iii) dependent variable at the top of the column in bold. 
*** p < 0.01, ** p < 0.05, * p < 0.1. 

 

6. The EU Strategic Technologies interdependencies through a network analysis 

 

The analysis of technological interdependencies is essential for understanding the direction of technological 

change (Rosenberg, 1979; Colladon et al., 2025) and they matter for sectoral innovation, also including twin 

transition in EU (Bontadini & Meliciani, 2025). The modern industrial system increasingly relies on 

intersectoral connections (Acemoglu et al., 2016), since as progress in one sector is often influenced by 

developments in related domains. Thus, in line with the literature investigating the technological trajectories 

through the ties among the technological fields in which firms invest (Breschi et al., 2003), by using network 

analysis we identify the connections between each of the EU Strategic Technologies, aimed at identifying those 

that serve as central hubs, facilitating innovation across multiple sectors (Pichler et al., 2020).  

 

In other words, we try to answer the simple question: “Given any particular technology (in our case EUST) of 

interest, how many other technologies (EUST) are connected to it? 

 
6.1 Network analysis: Bipartite Configuration Model (BiCM) Method 

 

A bipartite network, also referred to as a two-mode network, consists of two distinct layers of nodes, where 

connections occur solely between nodes of different types. In other words, nodes within the same layer do not 

directly connect to one another, but only to nodes in the other layer. These networks are widely utilized to 
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model the affiliation of economic actors, such as firms, with specific groups, such as technological categories 

(Newman, 2018). The most important information in a bipartite network is encapsulated in the rectangular 

matrix T with dimensions nxm, commonly known as the incidence matrix, where n is the number of EU 

Strategic Technologies (58 strategic EU technologies) on one layer and m is the number of International Patent 

Classification (IPC) on the other layer. Each element 𝑇)8	is assigned a value:  

             (1) 

 

The development of strategies and economic policies aimed at gaining a competitive advantage in the 

technological domain requires the identification of core and emerging technologies, which respectively 

represent established technological foundations and promising innovations for the future (Cho et al., 2011). 

Hence, to simplify our analysis, we apply a one-mode projection that transforms the bipartite network into a 

monopartite one (Newman, 2018), i.e. we created a technology-technology network, linking two technologies 

based on the number and type of IPC categories they share. For example, if Cloud and edge computing and 

AI-enabled systems both share IPC categories, they will be linked in the monopartite network, with the 

strength of their connection proportional to the number of IPC categories they share. 

 

In summary, finding a monopartite network that most accurately depicts the bipartite one while preserving as 

much information as possible is the basic objective; therefore, using the one-mode projection is an efficient 

way to reduce complexity (Newman, 2018).  

 

To achieve this, we followed the methodology proposed by Saracco et al. (2015), implementing appropriate 

null models to detect statistically relevant patterns in real bipartite networks. Specifically, we use the Bipartite 

Configuration Model (BiCM). The model generates a probability distribution over possible bipartite networks, 

preserving the observed degree sequences (the number of connections each node has), while treating the links 

as independent. As a result, we obtain a monopartite network where nodes of the same layer are connected 

based on their co-occurrence in the original bipartite structure. This allows us to create a  𝑉88′ matrix 

connecting the 𝑗<=  technology to the 𝑗><=  technology.  

 

As highlighted by Saracco et al. (2015), these projections can be used to compute topological measures, such 

as degree centrality and other metrics that capture the structure of the original bipartite network while 

reducing its complexity. 
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In the context of graph theory and network analysis, various measures are used to evaluate the centrality and 

connectivity of the nodes within a graph. These measures can be divided into two categories: direct and 

indirect measures.  

 

Direct measures are computed directly from the graph based on the nodes and edges (links). These measures 

do not require additional computations and are simple to derive from the graph structure itself.  Degree 

centrality is the most basic statistic in network analysis because it basically answers the simple question: 

“Given any particular technology of interest (in our case EUST), how many other technologies (EUST) are 

connected to it?”. The degree of a technology-node 𝑣8  represents the number of adjacent nodes, indicating 

how well-connected the node is in the graph. A more advanced indirect centrality measure is shown in 

Appendix, providing consistent results with the simple degree centrality.  

 

6.2 Results 

 

We constructed the bipartite network introduced in 6.1, using IPCs categories (4-digit level8) and the 58 EUST 

identified by the European Union (Table A1 in Appendix). From this, we derived the technology-technology 

network, which has 58 nodes, where each node represents a strategic EUST, and connections between them 

are established based on shared IPC categories. We then computed the degree centrality of this network, 

identifying the top 10 EUST with the highest degree. A higher degree centrality indicates that a technology is 

strongly interconnected with many others, suggesting that the capabilities required to innovate in that field 

are also relevant to multiple other technologies. These highly connected technologies act as technological 

pivots, facilitating advancements not only within their domain but also across diverse and potentially unrelated 

sectors (Pichler et al., 2020, Tseng et al., 2016).   

 

Among the technologies with the highest degree, we find Cloud and edge computing (9), Cyber security 

technologies inc. cyber- surveillance, security and intrusion systems, digital forensics (8) and Hydrogen and 

new fuels (7) (Table 10). The high degree centrality of Cloud and Edge Computing suggests that patent-holding 

firms investing in this area may also engage with other EUST. Some technologies have no significant 

 
8 In line with the approach proposed in Bumbea et al. (2025), we constructed the incidence matrix at the 4-digit IPC level by 
aggregating the 14-digit IPC codes. This aggregation reduced sparsity and enhanced connectivity, allowing for more reliable 
inferences on technological interrelationships, within the graphs. 
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connection to other technologies; this will be referred to as isolated technologies. (For each technology, we 

have created tables linking the EU Strategic Technologies, which are provided in Appendix, Table A7).  

 

We are able to visualize the statistically significant connections between technologies in Figure 5. The nodes 

with higher degrees are highlighted within the graph, with larger nodes representing higher degrees and 

smaller nodes indicating lower degrees.  

 

Table 10 Ranking (top-10) of strategic EU technologies, extracted from the BiCM, ordered by degree 
centrality 

Technologies Degree 

Cloud and edge computing 9 

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital 
forensics 

8 

Hydrogen and new fuels 7 

Hydrogen technologies, including electrolysers and fuel cells 7 

AI-enabled systems 7 

Space surveillance and Earth observation technologies 7 

Computer vision, language processing, object recognition 6 

High Performance Computing 6 

Internet of Things (IoT) and Virtual Reality 6 

Renewable Fuels of Non-Biological Origin Technologies 6 

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne, Universitas Mercatorum 
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Figure 5. The technology-technology network.  
The size of each node depends on the number of links it has, therefore, nodes with 0 links, representing 
isolated technologies, disappear.  

 

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne, Universitas Mercatorum 

 

7. Conclusion 

The current EU policy agenda has now placed technological sovereignty and economic security at its very core, 

recognizing the indispensable need to close the innovation gap vis-à-vis other global actors, namely the US, 

so as to safeguard the Union’s economic resilience. In practice, this has been translated into an ambitious 

industrial policy platform, encompassing several programmes (in particular, STEP and NZIA EU Regulations) 

aimed at supporting investments in strategic technologies under the umbrella of Economic Security. This 

framework, which has now replaced the earlier paradigm of Open Strategic Autonomy, further stresses the 

strategic value of technological sovereignty for both competitiveness and safety and security, while preserving 

the EU’s commitment to an open, rule-based order (Edler, 2024).  
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The Letta and Draghi reports both highlighted the urgency of accelerating the uptake of advanced 

technologies (i.e., deep-tech, net-zero technologies) by also leveraging a well-functioning Single Market, which 

is a crucial condition for European firms to scale up, innovate and invest in these types of technologies. 

The present study has many objectives. First, it aims to provide empirical evidence on firms’ degree of 

innovation in EU strategic technologies (EUST) – also highlighting the Net-Zero technologies (EUST NZ) – 

both among global actors, above all the US and China, and across EU member states. To do this, the study 

measures innovation by mapping the patent codes (IPC classification) linked to EUST by applying Large 

Language Model (LLM) with a robustness check by scraping a sample of firms’ websites. Second, it investigates 

whether there is a positive effect between innovation in EUST and labour productivity at the firm level, 

although for Italian firms only. Finally, it investigates the interdependencies between each EUST through 

network analysis.  

In the face of these aims, results shows that: i) there is a high heterogeneity of firms’ innovation propensity in 

EUST among EU Member States; ii) compared to the US, the EU shows a more widespread distribution of 

firms with patents in EUST but suffers a gap in terms of number of patents; iii) with regards to China, the EU’s 

position is reversed in light of a drawback in terms of firms’ propensity but an edge in terms of patent diffusion; 

iv) there a positive effect of innovation in EUST on firm’s labour productivity, which further increases in the 

case of Net-Zero technologies; v) R&D and a developed capital market further support EUST innovation; vii) 

some strategic technologies, such as those related to Cloud computing, Cyber security, Hydrogen, Artificial 

Intelligence, Space surveillance and Earth observation technologies, demonstrate higher degrees of 

connection with other EUST. The empirical evidence in this study is intended to provide useful information for 

the EU’s industrial policy design. The contribution to industrial policy is twofold. First, at a geographical level, 

it aims at favouring an entrepreneurial convergence in terms of innovation in EUST – including EUST NZ – 

between member states. Second, technologically, it seeks to incentivise “trigger” technologies, i.e., those 

showing higher degrees of interdependence with other strategic technologies (namely, degree of centrality), 

therefore facilitating the identification of those technologies which can contribute the most to the technological 

sovereignty of the EU. 

Notwithstanding, the present study also shows some limitations. Firstly, the study investigates innovation only 

through patents. Secondly, the identification of patent codes needs further robustness checks, such as web 

scraping on all firms owning EUST patents besides on only a sample of firms. Thirdly, we consider patents 

with a filing date of the last 20 years, so further analysis by changing the time period could be useful. Fourthly, 

with regards to the econometric analysis, which is based on the average level of labour productivity of the last 
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ten years, further robustness checks by changing the time period may be needed, as well as taking into account 

the time variation besides the levels. The analysis inquiring into the causal relationship should be strengthened 

through specific types of analyses such as difference-in-difference.  

Along with the network analysis, fitness and complexity analyses would also be of great value for policymakers. 

Future developments of this study will extend to labour force skill mismatches, with a particular focus on 

advanced digital competencies. Finally, given the gap between knowledge generation and commercial 

exploitation of patents, future developments will empirically investigate the nexus between patenting and its 

exploitation by firms (i.e., manufacturing, selling, licensing, or distributing the patented product or process). 
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Appendix 

Table A1. List of EU Strategic Technologies divided into non Net-Zero (EUST_noNZ) and Net-Zero 
(EUST_NZ) 

Net-Zero type  Description  

EUST_noNZ Smart grids and energy storage, batteries 
EUST_noNZ Additive manufacturing, including in the field 
EUST_noNZ AI-enabled systems  
EUST_noNZ Cloud and edge computing 
EUST_noNZ Computer vision, language processing, object recognition 
EUST_noNZ Cyber security technologies incl. cyber- surveillance, security and intrusion 

systems, digital forensics 
EUST_noNZ Data analytics technologies 
EUST_noNZ Dedicated space-focused technologies 
EUST_noNZ Digital controlled micro-precision manufacturing and small-scale laser 

machining/welding  
EUST_noNZ Distributed ledger and digital identity technologies 
EUST_noNZ Electro-optical, radar, chemical, biological, radiation and distributed sensing  
EUST_noNZ Exoskeletons 
EUST_noNZ Gene-drive 
EUST_noNZ Gravity meters and gradiometers 
EUST_noNZ Guidance, navigation, and control technologies, including avionics and marine 

positioning 
EUST_noNZ High frequency chips 
EUST_noNZ High Performance Computing 
EUST_noNZ Hydrogen and new fuels 
EUST_noNZ Internet of Things (IoT) and Virtual Reality 
EUST_noNZ Magnetometers, magnetic gradiometers 
EUST_noNZ Microelectronics and Processors 
EUST_noNZ Net-zero technologies, including photovoltaics 
EUST_noNZ New genomic technique 
EUST_noNZ Nuclear fusion technologies, reactors and power generation, radiological 

Conversion/Enrichment/Recycling Technologies 
EUST_noNZ Photonics (including high energy laser) technologies 
EUST_noNZ Propulsion technologies, including hypersonics and components for military use 
EUST_noNZ Quantum communications 
EUST_noNZ Quantum computing 
EUST_noNZ Quantum cryptography 
EUST_noNZ Quantum sensing and radar 
EUST_noNZ Robotics and Autonomous Systems 
EUST_noNZ Robots and robot-controlled precision systems 
EUST_noNZ Secure communications including Low Earth Orbit (LEO) connectivity 
EUST_noNZ Secure digital communications and connectivity, such as RAN & Open RAN 

(Radio Access Network) and 6G 
EUST_noNZ Semiconductor manufacturing equipment at very advanced node sizes 
EUST_noNZ Space positioning, navigation and timing (PNT) 
EUST_noNZ Space surveillance and Earth observation technologies  
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EUST_noNZ Synthetic biology 
EUST_noNZ Techniques of genetic modification 
EUST_noNZ Technologies for extraction, processing and recycling of critical raw materials 
EUST_noNZ Technologies for nanomaterials, smart materials, advanced ceramic materials, 

stealth materials, safe and sustainable by design materials 
EUST_noNZ Underwater electric field sensors 

EUST_NZ Battery and energy storage technologies 

EUST_NZ 
Biomaterials Production Technologies, Including Bio-Based Chemical Production 
Technologies 

EUST_NZ Carbon Capture and Storage Technologies 

EUST_NZ CO2 transport technologies 

EUST_NZ 
Electricity Grid Technologies, Including Electric Charging Technologies for 
Transportation and Technologies to Digitalize the Grid 

EUST_NZ Energy System-Related Energy Efficiency Technologies 

EUST_NZ Heat pumps and geothermal energy technologies 

EUST_NZ Hydrogen technologies, including electrolysers and fuel cells  

EUST_NZ Nuclear Fission Energy Technologies, Including Nuclear Fuel Cycle Technologies 

EUST_NZ Onshore Wind and Offshore Renewable Technologies  

EUST_NZ Sustainable Propulsion Technologies for Transportation 

EUST_NZ 

Renewable energy technologies not covered under the previous categories 
(osmotic energy technologies, ambient energy technologies, hydropower 
technologies, biomass technologies, landfill gas technologies, sewage treatment 
plant gas technologies, biogas technologies, thermal energy technologies 
including heat grid technologies) 

EUST_NZ Renewable Fuels of Non-Biological Origin Technologies 

EUST_NZ Solar technologies 

EUST_NZ Sustainable Alternative Fuels Technologies 

EUST_NZ Sustainable biogas and biomethane technologies 
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Map A1. EUST NZ firms (number) 
 

 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 

 

 

 

Map A2. EUST NZ firms per 10,000 firms 

 

 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 
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Map A3. EUST NZ patents per 100,000 inhabitants 
 

 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 
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Table A2. Macro regions 
 

 Firms* 
 Patents 

Macro regions  

N. firms 
with 

patents in 
EUST 

of which 
with 

patents in 
EUST NZ 

EUST 
firms per 

10,000 
firms 

EUST NZ 
firms per 

10,000 
firms 

 N. patents 
in EUST 

N. patents 
in EUST 

NZ 

EUST 
patents 

per 
100,000 
persons 

EUST NZ 
patents 

per 
100,000 
persons 

EU 27 36,406 11,938 21 7  1,726,337 348,279 385 78 
USA 41,997 10,232 22 5  3,354,968 369,110 1,002 110 
China 226,424 87,050 100 39  4,953,288 868,339 351 62 
Japan 19,041 6,424 110 37  2,825,736 525,122 2,269 422 
Canada 2,309 673 24 7  108,928 17,502 272 44 
Russia 4,519 1,662 20 7  54,022 16,938 38 12 
Central and 
South 
America 2,557 773 2 1 

 

102,261 10,668 16 2 
Africa 637 136 2 0  10,018 4,930 1 0 
Oceania 3.909 806 15 3  46,325 10,225 103 23 
Other 
European 12,677 3,798 16 5 

 
359,932 80,055 153 34 

Other Asian 49,782 12,572 57 14  2,209,069 323,814 70 10 
World 400,258 136,064 41 14  15,750,884 2,574,982 195 32 

 
* All data refers to the limited companies. 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 

 
Map A4. EUST NZ firms (number) 

 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 
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Map A5. EUST NZ firms per 10,000 firms 

 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 

 
Map A6. EUST NZ patents per 100,000 inhabitants 

 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 
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Table A3 European Union countries 

 
 Firms* 

 Patents 

EU Regions  

N. firms 
with 

patents in 
EUST 

of which 
with 

patents in 
EUST NZ 

EUST 
firms per 

10,000 
firms 

EUST NZ 
firms per 

10,000 
firms 

 N. patents 
in EUST 

N. patents 
in EUST 

NZ 

EUST 
patents 

per 
100,000 
persons 

EUST NZ 
patents 

per 
100,000 
persons 

Austria 1,098 383 52 18  35,227 7,143 386 78 
Belgium 1,094 342 18 6  31,958 11,050 271 94 
Bulgaria 449 99 6 1  1,193 225 19 3 
Croatia 75 19 5 1  529 149 14 4 
Cyprus 108 24 12 3  2,795 240 208 18 
Czech 
Republic 812 306 16 6 

 
6,053 1,884 56 17 

Denmark 922 393 26 11  44,860 31,312 754 527 
Estonia 122 42 5 2  833 272 61 20 
Finland 1,313 361 46 13  114,728 8,716 2055 156 
France 4,577 1,436 16 5  334,723 66,092 490 97 
Germany 10,755 3,727 59 20  581,786 129,472 699 155 
Greece 89 28 10 3  759 111 7 1 
Hungary 309 97 9 3  2,494 687 26 7 
Ireland 556 143 34 9  66,346 3,504 1250 66 
Italy 5,169 1,392 35 9  61,605 14,529 104 25 
Latvia 58 19 5 2  576 196 31 10 
Lithuania 86 20 9 2  1,741 297 61 10 
Luxembourg 258 76 25 7  7,795 1,647 1170 247 
Malta 34 5 24 4  1,434 47 259 9 
Netherlands 2,351 945 20 8  175,334 39,488 981 221 
Poland 1,265 459 23 8  13,302 4,588 36 13 
Portugal 279 71 4 1  3,415 903 32 9 
Romania 319 95 2 1  1,759 489 9 3 
Slovakia 220 79 6 2  2,255 462 42 9 
Slovenia 183 46 23 6  1,035 335 49 16 
Spain 2,215 787 11 4  37,696 14,519 78 30 
Sweden 1,690 544 26 8  194,106 9,922 1842 94 
EU 27 36,406 11,938 21 7  1,726,337 348,279 385 78 

 
* All data refers to the limited companies. 
Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne 
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Table A4. Variables description of the propensity score 

Variables Type Description 
 
Dependent variables 
EUST Binary 1 = firm with patents in EU Strategic Technologies; 0 = otherwise (source: 

elaboration on Moody’s data) 
Independent variables  
Industry tech Dummies 1 = if the firm belongs to a n-sector according to the OECD/EUROSTAT 

technology and knowledge intensity classification (high/medium-high 
technology intensive manufacturing; low/medium-low technology 
intensive manufacturing; high knowledge intensity services; low 
knowledge intensive services); sectors not elsewhere classified (Industry 
n.e.c.); 0 = otherwise (source: elaboration on ISTAT data) 

Size Dummies 1 = if the firm belongs to a n-size class: less than 10 employees (Micro); 10-
49 employees (Small); 50-249 employees (Medium); 250 and over 
employees (Large); 0 = otherwise (source: elaboration on ISTAT) 

Localization Dummies 1 = if the firm belongs to a n-NUTS 1 (North-West, North-East, Center, 
South*); 0 = otherwise. 

Age Discrete Number of years since inception (source: elaboration on ISTAT) 
Graduates Continuous Share of graduated employees of total employees  
Governance Dummies 1 = if the firm belongs to a n-type of governance: Foreign-invested 

firms with foreign control (FI foreign control); Foreign-invested firm 
with Italian control (FI Italian control); Italian corporate group 
(Corporate group); Independent firm (Independent); not classified 
(Gov nc) (source: elaboration on ISTAT) 

R&D Continuous R&D asset value per employee (euro) (source: elaboration on Moody’s 
data) 

Capital market Dummy 1 = if the firm is a listed company (source: Moody’s) 
Asset Continuous Total asset (thousand euro) (source: elaboration on Moody’s data) 

   * South includes also the Islands.     
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Table A5. Probit of propensity score 

 Pr(Treatment) 

HM  0.572*** 

 (0.085) 

HKIS 0.395*** 

 (0.040) 

LKIS 0.640*** 

 (0.073) 

Industry  n.e.c. 0.194*** 

 (0.057) 

Small 0.107* 

 (0.060) 

Medium 0.326*** 

 (0.066) 

Large 0.738*** 

 (0.079) 

North-East 0.029 

 (0.037) 

Center 0.007 

 (0.051) 

South 0.115 

 (0.073) 

Age -0.000 

 (0.001) 

Graduates  1.041*** 

 (0.098) 

FI foreign control 0.028 

 (0.062) 

FI italian control 0.128*** 

 (0.049) 

Corporate group -0.005 

 (0.044) 

Gov n.c -0.068 

 (0.534) 

R&D 0.005*** 

 (0.001) 

Capital market 0.403*** 

 (0.118) 

Asset 0.000 

 (0.000) 

  

Pseudo R2 0.097 

LR chi2 824.63*** 

Observations 8,710 
Note: i) Treatment refers to the variable EUST. ii) standard errors in parentheses. 
*** p < 0.01, ** p < 0.05, * p < 0.1. 
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Figure A1. Propensity-score density before and after matching  

       
 
 
Table A6. Balancing properties of the matched sample  

 
Treated 

Matched 
control 

t-test p-value 

HM 0.450 0.424 1.63 0.103 

HKIS 0.171 0.181 -0.77 0.440 

LKIS 0.122 0.136 -1.34 0.180 

Industry  n.e.c. 0.051 0.053 -0.26 0.796 

Small 0.311 0.313 -0.07 0.944 

Medium 0.380 0.374 0.40 0.686 

Large 0.215 0.219 -0.24 0.812 

North-East 0.363 0.366 -0.20 0.839 

Center 0.139 0.144 -0.47 0.639 

South 0.062 0.064 -0.27 0.788 

Age 38.822 35.144 -0.60 0.546 

Graduates 0.286 0.284 0.34 0.731 

FI foreign control 0.149 0.157 -0.68 0.496 

FI italian control 0.353 0.343 0.63 0.526 

Corporate group 0.255 0.2654 -0.67 0.503 

Gov n.c 0.005 0.007 -0.31 0.756 

R&D 2.266 2.791 -0.81 0.420 

Capital market 0.046 0.051 -0.68 0.495 

Asset 137.15 116.51 0.76 0.446 
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Table A7. Technological interdependencies: Technologies ordered by Degree centrality.  
For each EU strategic technology, we report the list of the other EU strategic technologies most connected 
by technological interdependencies 
 

1. Cloud and edge computing (9)  
Secure communications including Low Earth Orbit (LEO) connectivity 

Secure digital communications and connectivity, such as RAN & Open RAN (Radio Access Network) and 6G 

Computer vision, language processing, object recognition 

High Performance Computing 

Internet of Things (IoT) and Virtual Reality 

Data analytics technologies 

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics 

AI-enabled systems  

Quantum cryptography 

 
2. Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics (8) 

Quantum cryptography 

Secure communications including Low Earth Orbit (LEO) connectivity 

Distributed ledger and digital identity technologies 

High Performance Computing 

Internet of Things (IoT) and Virtual Reality 

AI-enabled systems  

Computer vision, language processing, object recognition 

Cloud and edge computing 

 
3. Hydrogen and new fuels (7) 

Hydrogen technologies, including electrolysers and fuel cells  

Renewable Fuels of Non-Biological Origin Technologies 

Sustainable biogas and biomethane technologies 

Smart grids and energy storage, batteries 

Battery and energy storage technologies 

CO2 transport technologies 

Carbon Capture and Storage Technologies 

 
4. Hydrogen technologies, including electrolysers and fuel cells (7) 

Renewable Fuels of Non-Biological Origin Technologies 

Sustainable biogas and biomethane technologies 

Smart grids and energy storage, batteries 

Battery and energy storage technologies 

CO2 transport technologies 

Carbon Capture and Storage Technologies 

Hydrogen and new fuels 

 
5. AI-enabled systems (7) 

Cloud and edge computing 

Computer vision, language processing, object recognition 

High Performance Computing 

Internet of Things (IoT) and Virtual Reality 
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Data analytics technologies 

Cyber security technologies, incl. cyber- surveillance, security and intrusion systems, digital forensics 

Distributed ledger and digital identity technologies 

 
6. Space surveillance and Earth observation technologies (7) 

Underwater electric field sensors 

Dedicated space-focused technologies 

Electro-optical, radar, chemical, biological, radiation and distributed sensing  

Guidance, navigation, and control technologies, including avionics and marine positioning 

Magnetometers, magnetic gradiometers 

Quantum sensing and radar 

Space positioning, navigation and timing (PNT) 

 
7. Computer vision, language processing, object recognition (6) 

High Performance Computing 

Internet of Things (IoT) and Virtual Reality 

Data analytics technologies 

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics 

AI-enabled systems  

Cloud and edge computing 

 
8. High Performance Computing (6) 

Internet of Things (IoT) and Virtual Reality 

AI-enabled systems  

Cloud and edge computing 

Computer vision, language processing, object recognition 

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics 

Data analytics technologies 

 
9. Internet of Things (IoT) and Virtual Reality (6) 

AI-enabled systems  

Cloud and edge computing 

Computer vision, language processing, object recognition 

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics 

Data analytics technologies 

High Performance Computing 

 
10. Renewable Fuels of Non-Biological Origin Technologies (6) 

Sustainable Alternative Fuels Technologies 

Sustainable biogas and biomethane technologies 

CO2 transport technologies 

Carbon Capture and Storage Technologies 

Hydrogen and new fuels 

Hydrogen technologies, including electrolysers and fuel cells  

 
11. Electro-optical, radar, chemical, biological, radiation and distributed sensing (6) 

Space positioning, navigation and timing (PNT) 

Guidance, navigation, and control technologies, including avionics and marine positioning 
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Quantum sensing and radar 

Space surveillance and Earth observation technologies  

Underwater electric field sensors 

Magnetometers, magnetic gradiometers 

 
12. Quantum sensing and radar (6) 

Space surveillance and Earth observation technologies  

Underwater electric field sensors 

Electro-optical, radar, chemical, biological, radiation and distributed sensing  

Guidance, navigation, and control technologies, including avionics and marine positioning 

Magnetometers, magnetic gradiometers 

Underwater electric field sensors 

 
13. Data analytics technologies (5) 

High Performance Computing 

Internet of Things (IoT) and Virtual Reality 

AI-enabled systems  

Cloud and edge computing 

Computer vision, language processing, object recognition 

 
 

14. CO2 transport technologies (5) 
Sustainable biogas and biomethane technologies 

Carbon Capture and Storage Technologies 

Renewable Fuels of Non-Biological Origin Technologies 

Hydrogen and new fuels 

Hydrogen technologies, including electrolysers and fuel cells  

 
15. Sustainable biogas and biomethane technologies (5) 

CO2 transport technologies 

Carbon Capture and Storage Technologies 

Hydrogen and new fuels 

Hydrogen technologies, including electrolysers and fuel cells  

Renewable Fuels of Non-Biological Origin Technologies 

 
16. Carbon Capture and Storage Technologies (5) 

Renewable Fuels of Non-Biological Origin Technologies 

Sustainable biogas and biomethane technologies 

Hydrogen and new fuels 

Hydrogen technologies, including electrolysers and fuel cells  

CO2 transport technologies 

 
17. Secure communications including Low Earth Orbit (LEO) connectivity (5) 

Secure digital communications and connectivity, such as RAN & Open RAN (Radio Access Network) and 6G 

Cloud and edge computing 

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics 

Distributed ledger and digital identity technologies 

Quantum cryptography 
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18. Quantum cryptography (5) 

Secure communications including Low Earth Orbit (LEO) connectivity 

Secure digital communications and connectivity, such as RAN & Open RAN (Radio Access Network) and 6G 

Cloud and edge computing 

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics 

Distributed ledger and digital identity technologies 

 
19. Space positioning, navigation and timing (PNT) (5) 

Space surveillance and Earth observation technologies  

Electro-optical, radar, chemical, biological, radiation and distributed sensing  

Gravity meters and gradiometers 

Guidance, navigation, and control technologies, including avionics and marine positioning 

Quantum sensing and radar 

 
20. Guidance, navigation, and control technologies, including avionics and marine positioning (5) 

Space positioning, navigation and timing (PNT) 

Quantum sensing and radar 

Space surveillance and Earth observation technologies  

Electro-optical, radar, chemical, biological, radiation and distributed sensing  

Gravity meters and gradiometers 

 
21. Smart grids and energy storage, batteries (4) 

Battery and energy storage technologies 

Hydrogen and new fuels 

Hydrogen technologies, including electrolysers and fuel cells  

Electricity Grid Technologies, Including Electric Charging Technologies for Transportation and Technologies to Digitalize the 
Grid 

 
22. Distributed ledger and digital identity technologies (4) 

Quantum cryptography 

Secure communications including Low Earth Orbit (LEO) connectivity 

AI-enabled systems  

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics 

 
23. Biomaterials Production Technologies, Including Bio-Based Chemical Production Technologies (4)  

Gene-drive 

Synthetic biology 

Techniques of genetic modification 

New genomic technique 

 
24. Gene-drive (4)  

Synthetic biology 

Techniques of genetic modification 

New genomic technique 

Biomaterials Production Technologies, Including Bio-Based Chemical Production Technologies 
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25. Synthetic biology (4) 
Techniques of genetic modification 

Biomaterials Production Technologies, Including Bio-Based Chemical Production Technologies 

Gene-drive 

New genomic technique 

 
26. Techniques of genetic modification (4) 

Biomaterials Production Technologies, Including Bio-Based Chemical Production Technologies 

Gene-drive 

New genomic technique 

Synthetic biology 

 
27. New genomic technique (4) 

Synthetic biology 

Techniques of genetic modification 

Biomaterials Production Technologies, Including Bio-Based Chemical Production Technologies 

Gene-drive 

 
28. Secure digital communications and connectivity, such as RAN & Open RAN (Radio Access Network) and 6G (4)  

Cloud and edge computing 

Quantum communications 

Quantum cryptography 

Secure communications including Low Earth Orbit (LEO) connectivity 

 
29. Underwater electric field sensors (4) 

Electro-optical, radar, chemical, biological, radiation and distributed sensing  

Magnetometers, magnetic gradiometers 

Quantum sensing and radar 

Space surveillance and Earth observation technologies  

 
30. Magnetometers, magnetic gradiometers (4) 

Quantum sensing and radar 

Space surveillance and Earth observation technologies  

Underwater electric field sensors 

Electro-optical, radar, chemical, biological, radiation and distributed sensing 

 
31. Battery and energy storage technologies (3)  

Hydrogen and new fuels 

Hydrogen technologies, including electrolysers and fuel cells  

Smart grids and energy storage, batteries 

 
32. Gravity meters and gradiometers (2)  

Space positioning, navigation and timing (PNT) 

Guidance, navigation, and control technologies, including avionics and marine positioning 

 
33. Microelectronics and Processors (2)  

Semiconductor manufacturing equipment at very advanced node sizes 

Net-zero technologies, including photovoltaics 
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34. Net-zero technologies, including photovoltaics (2)  
Solar technologies 

Microelectronics and Processors 

 
35. Sustainable Alternative Fuels Technologies (2) 

Renewable Fuels of Non-Biological Origin Technologies 

Renewable energy technologies not covered under the previous categories 

 
36. Electricity Grid Technologies, Including Electric Charging Technologies for Transportation and Technologies to 

Digitalize the Grid (1)  
 Smart grids and energy storage, batteries 

 
 
 

37. Dedicated space-focused technologies (1)  
Space surveillance and Earth observation technologies  

 
38. Exoskeletons (1)  

Robots and robot-controlled precision systems 

 
39. Robots and robot-controlled precision systems (1)  

Exoskeletons 

 
40. Semiconductor manufacturing equipment at very advanced node sizes (1)  

Microelectronics and Processors 

 
41. Solar technologies (1)  

Net-zero technologies, including photovoltaics 

 
42. Nuclear Fission Energy Technologies, Including Nuclear Fuel Cycle Technologies (1)  

Nuclear fusion technologies, reactors and power generation, radiological Conversion/Enrichment/Recycling Technologies 

 
43. Nuclear fusion technologies, reactors and power generation, radiological Conversion/Enrichment/Recycling 

Technologies (1) 
Nuclear Fission Energy Technologies, Including Nuclear Fuel Cycle Technologies 

 
44. Onshore Wind and Offshore Renewable Technologies (1) 

Sustainable Propulsion Technologies for Transportation 

 
45. Sustainable Propulsion Technologies for Transportation (1) 

Onshore Wind and Offshore Renewable Technologies  

 
46. Quantum communications (1) 

Secure digital communications and connectivity, such as RAN & Open RAN (Radio Access Network) and 6G 

 
47. Renewable energy technologies not covered under the previous categories (1)  

Sustainable Alternative Fuels Technologies 

 

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne, Universitas Mercatorum 
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Other centrality measure: The Betweenness centrality 

Indirect measures capture the global behaviour of the nodes within the network, reflecting their role in the 

overall connectivity. For example, betweenness centrality is an indirect measure that quantifies the extent to 

which a node acts as an intermediary in the shortest paths between other pairs of nodes. Specifically, it 

calculates the number of shortest paths that pass through a given node, indicating how central a node is in 

connecting different parts of the network. The betweenness centrality is given by Eqs A1. 

 =                                              (A1) 

 

Let n(u,v) represent the total number of shortest paths 𝑃 ∗AB	from node u to node v, and let 

 𝑛C	(𝑢, 𝑣) =|{𝑃 ∗AB	 |	𝑤	 ∉ 	𝑃 ∗AB	}|	represent the number of shortest paths from node u to node v that pass-

through node w. The betweenness centrality of node w can then be calculated as the fraction of shortest paths 

between all pairs of nodes that pass-through w, which provides a measure of the importance of node w in 

connecting different parts of the network. We also computed the Betweenness centrality.   
 

Table A8. The Betweenness centrality 

Technologies Betweenness 

Renewable Fuels of Non-Biological Origin Technologies 0,0155 

Cloud and edge computing 0,0148 

Secure digital communications and connectivity, such as RAN & Open RAN (Radio Access Network) and 
6G 

0,0099 

 Smart grids and energy storage, batteries 0,0087 

Hydrogen and new fuels 0,0087 

Hydrogen technologies, including electrolysers and fuel cells  0,0087 

Space surveillance and Earth observation technologies  0,0087 

Sustainable Alternative Fuels Technologies 0,0087 

Cyber security technologies incl. cyber- surveillance, security and intrusion systems, digital forensics 0,0052 

Space positioning, navigation and timing (PNT) 0,0029 

Source: Research Center of the Chambers of Commerce Guglielmo Tagliacarne, Universitas Mercatorum 

Having a high betweenness centrality means that a particular technology plays a crucial role in the 

interconnection of other technologies or concepts in the overall system. Technologies with high betweenness 
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are those that act as 'intermediaries' or 'connectors' for many other technologies. For example, Renewable Fuels 

of Non-Biological Origin Technologies and Cloud and Edge Computing are among the most central in the 

network, suggesting that they are connected to many other technologies or could serve as hubs for future 

technological developments. Technologies with high betweenness centrality are critical for the network: if 

these intermediary nodes were removed, the graph could fragment, disrupting many connections between 

other technologies. In practice, without these nodes, the network would become less connected, compromising 

the diffusion of innovations. Therefore, these technologies are essential for maintaining the integrity and 

cohesion of the entire system, and their absence could lead to a 'collapse' of the graph.  

 

 

 

 

 

 


