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Abstract 

This paper investigates the role of green research networks in green innovation capabilities (proxied by green 

patents) in European regions. Our hypothesis is based on the idea that cross-border collaboration facilitates 

the diffusion of knowledge, thereby favouring the green innovation of the regions belonging to the network. 

We exploit information contained in the European Framework Programmes by looking at the role of intra and 

extra-regional collaborations and at the diversity of institutional partners. We find that both intra and extra 

regional collaborations matter for green innovation, although external knowledge appears to be more relevant. 

We also find a positive effect of both firms and universities and a non-linear effect of network heterogeneity. 

We discuss the implications of the results for green innovation policies. 
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1. Introduction 

In an era of unprecedented environmental crises, environmental (or green) innovation (EI) plays a critical role 

in sustaining the green transition. The European Union has responded to this emergency by taking massive 

measures to decrease its carbon footprint and enhance sustainability through the European Green Deal. 

 

One of the core components of the Green Deal is the 'Fit for 55%' package, a set of proposals introduced 

following the Paris Agreement. The package aims to reduce CO2 emissions by 55% compared to 1990 levels 

by the end of 2030 and to achieve climate neutrality, or net zero emissions, by 2050. The ultimate goal of the 

Fit for 55% package is to make Europe the world's first climate-neutral continent by 2050. Two key elements 

of the renewed EU strategy to fight climate change are the extension and revision of the European Emissions 

Trading System (EU ETS) and the introduction of the Carbon Border Adjustment Mechanism (CBAM). The 

EU ETS cap reduction aims to decrease the number of emission allowances available, while the CBAM is 

designed to prevent carbon leakage by applying a carbon price on imports of certain goods from outside the 

EU, ensuring that European companies are not disadvantaged by climate policies (Böning et al., 2023). 

 

In the short term, these measures are likely to increase production costs for firms as they should internalize 

the external costs of pollution. This internalization process means that firms will have to pay for the 

environmental damage they cause, which can initially result in higher costs and reduced profitability. In the 

long term, to maintain international competitiveness, companies should focus on improving their innovation 

capabilities and increasing R&D investments. By enhancing their ability to innovate, firms can develop new 

technologies and processes that reduce emissions and improve efficiency, thereby mitigating the negative 

impacts of the greening measures. This emphasis on innovation is critical for the green transition, as it enables 

companies to adapt to new regulations and avoid the transition costs. 
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Given the unique nature of green technologies and the specialised knowledge required for environmental 

innovation (EI), literature emphasises that firms cannot act in isolation (Cisneros et al., 2023). They need to 

seek new knowledge and expertise beyond their own boundaries by collaborating with other actors. Such a 

transition can be achieved through innovation and cooperation among EU members. To facilitate this, the 

European Commission has been actively promoting and supporting cooperative initiatives in research and 

innovation through multi-annual and multi-thematic Framework Programmes (FP). These programmes 

involve significant public investments aimed at generating and diffusing knowledge, thus fostering economic 

growth and convergence (Balland et al., 2018; Meliciani et al., 2022). They finance joint projects that aim to 

create networks among all institutional research sectors, including firms, universities, and public research 

centers. The core objective of this strategy is to generate new knowledge and implement it in business practices 

and production processes, thereby enhancing the performance of firms, regions, and countries, and making 

them more competitive in the global market. 

 

Although there is a growing body of literature examining the impact of participation in the EU FPs on 

knowledge transfer (Maggioni et al. 2007; Hoekman et al. 2013; Di Cagno et al. 2014), to the best of our 

knowledge there is no empirical evidence on how green networks may affect the green innovation capacity at 

the regional level. We try to fill this gap by investigating the role of green research networks in enhancing 

green innovation capabilities within European regions. First, we test the hypothesis that collaboration within 

these networks promotes green innovation in the regions involved. We also explore whether collaboration 

beyond regional boundaries facilitates the diffusion of knowledge, thus promoting EI. Our hypothesis is based 

on the idea that collaboration beyond boundaries facilitates the spread of knowledge in EI, favouring the green 

technological transition of regions that belong to the network. Then, we assess whether private companies, 

public research institutions, and universities contribute differently to increasing knowledge, leading to a 

heterogeneous impact on green innovation. Finally, we look at the role of the diversification degree of network 
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composition. The synergies among various actors in the network are critical for enhancing innovation capacity 

(Ghisetti et al. 2015). However, these interactions might also present challenges due to the diverse knowledge 

bases and objectives of each actor, as highlighted by Foray and Lissoni (2010). 

 

Our results show that collaboration within the green research network contributes significantly to green 

innovation. By participating in networks, firms can benefit from external collaboration and thus increase their 

innovative capacity. Both internal and external collaboration are beneficial for EI. However, interregional 

cooperation appears to be more important because it supports the hypothesis that transregional networks can 

bridge the knowledge gap even when regions are not geographically close. Furthermore, we find that the 

participation of universities and private firms is particularly important in driving green innovation and that 

there is a positive effect from the heterogeneity of the participants that make up the network and the synergies 

they generate. However, the impact of heterogeneity is non-linear: research groups that are too heterogeneous 

risk having a negative impact on green innovation. 

 

This study contributes with original insights to the literature on green innovation dynamics within European 

regions. By examining the role of green networks and the effectiveness of policies aimed at enhancing 

knowledge diffusion, this paper offers a novel perspective on strategies facilitating the green transition. It 

introduces several key innovations compared to previous literature. First, we utilize an extensive and up-to-

date dataset on green patents at the regional level, allowing for a more detailed and accurate analysis of green 

innovation across different areas. Second, we highlight the distinct roles played by universities, firms, and 

public research centers in fostering knowledge exchange. While existing studies focus on the differing green 

innovation capacities of institutional sectors at the country level, our research examines these differences at 

the regional level. Third, we look at whether the heterogeneity of the actors involved in the network helps 

generate new green knowledge proxied by green patents. 
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The paper is structured as follows. Section 2 discusses the relevant literature and proposes some testable 

hypotheses. Section 3 describes the methodology and data. A discussion of the econometric results is 

presented in Section 4, and it is followed by the conclusions in Section 5. 

 

2. Literature review 
 
A large body of literature has looked at the importance of networks as drivers of innovation (see Powell and 

Grodal, 2006 for a review of the literature). By facilitating knowledge sharing, networks increase the innovative 

capacity of individual firms, which alone would not have access to all the knowledge needed to innovate, 

especially when knowledge is highly complex.  

 

With respect to the standard networks, EI requires multidisciplinary knowledge and large investments in 

physical and human capital (Cainelli et al., 2015). The literature emphasizes that firms cannot achieve green 

innovation in isolation. Firms need to seek new knowledge and external expertise by collaborating with other 

actors (Cisneros et al., 2023).  

 

Empirical analyses support the idea that environmentally innovative firms cooperate more with external 

partners if compared to other innovative firms (de Marchi and Grandinetti, 2013; Cainelli et al., 2015; Ghisetti 

et al., 2015). This collaboration is essential for enhancing overall green innovation knowledge and capabilities 

(Tang et al., 2020). It draws on the idea that environmental innovations require more heterogeneous sources 

of knowledge with respect to other innovations (Horbach et al., 2013). Consequently, firms are inclined to 

engage in collaborative efforts with external partners, leveraging shared knowledge, resources, and expertise 

(Fabrizi et al., 2024).  
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Ghisetti et al. (2015) argued that the open innovation mode (Chesbrough, 2003; Chesbrough et al., 2006) may 

also be applied in the context of environmental innovation. Given the high and multidisciplinary skills 

(including technical and scientific skills, legislative skills, and managerial and economic competencies) 

required for implementing or developing green innovations, external knowledge sourcing and networking 

becomes crucial for firms (Fabrizi et al., 2018). The first dimension of the open innovation mode is represented 

by the way firms search for external knowledge in order to innovate and it accounts for the breadth of the firm’s 

knowledge search. The greater the number of external parties with which a firm cooperates, the more likely it 

is to compensate for the lack of some specific internal competence. Moreover, implementing green 

technologies aims to achieve several goals, including enhancing production efficiency and meeting market 

and regulatory quality standards (Oltra and Saint Jean, 2005). The extensive networks address these multiple 

objectives related to EI by leveraging potential economies of scope.  

 

In addition, physical proximity encourages knowledge transfer, as underlined by Boschma (2005). This is 

particularly relevant because knowledge tends to be geographically concentrated, thus making location a 

critical factor for efficient knowledge sharing (Eugster et al., 2022). Indeed, the literature highlights that 

knowledge spillovers from foreign sources can significantly enhance a region's innovative capacity. Spatial 

knowledge spillovers, especially from neighboring regions, improve the ability to innovate a specific area (see 

for instance, Charlot et al., 2015; Kijek and Kijek, 2019).   

 

However, when there is no geographical proximity, transnational networks can also fill this gap as noted by 

Autant-Bernard et al. (2007) and Maggioni and Uberti (2011). This is based on the idea that regions involved 

in transregional networks are more likely to participate in innovation activities. These transregional networks 

guarantee that a region could still connect to external knowledge flows even in the event of not being close to 

each other, hence enhancing green innovation activities in such a region. Interaction between local and 
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transregional knowledge networks offers a strong environment for innovation; it is able to draw from both local 

and foreign knowledge. Given the importance of networks and open innovation for the creation of green 

knowledge, we use data on European FPs in green fields to investigate their contribution to generating green 

patents at the regional level. In particular, we pose the following research questions: 

 

1. Does collaboration within green research networks promote the green innovation of the regions involved?  

2. Does collaboration beyond regional boundaries facilitate the diffusion of knowledge, thus promoting EI? 

 

The use of information on green FPs allows us not only to assess the importance of regional and transregional 

research networks, but also to consider the role of the different institutional sectors involved in the networks 

and of their synergies. Empirical and theoretical literature highlight the numerous benefits that can be gained 

from participating in mixed partnerships (Paier and Scherngell 2011; Bettina 2015; Fabrizi et al. 2016). These 

partnerships offer a set of advantages for all parties involved, such as access to complementary skills, access 

to larger financial resources, and the reduction of risks. Thus, synergies among different actors (private and 

public) in the network become crucial for driving innovation. In the context of green innovation, the interaction 

and hybridisation between three institutional spheres - ‘industry’, ‘university’ and ‘government’ (Triple Helix, 

Etzkowitz and Leydesdorff, 2000) - is particularly important due to the heterogeneity of knowledge required 

for finding green solutions, the role of regulation in directing green efforts and the necessity of adopting a 

systemic approach. Nevertheless, as highlighted by Foray and Lissoni (2010), the interaction might also present 

challenges due to the diverse knowledge bases and objectives of each actor, which could potentially reduce 

the innovation capacity.  

 

In this context, we investigate which characteristics of network participants are more important for EI at the 

local level, studying the contribution of different institutional sectors to the innovation capacity. Moreover, we 
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look at the diversification degree of network actors by using the entropy concept. Specifically, we formulate 

the last research question: 

 

3. Do institutional sectors contribute differently to increasing green knowledge? Does a high diversification lead 

to a greater innovation? Is the relationship linear? 

 

On the one hand, different actors can bring different knowledge and skills to the table; on the other hand, 

different objectives and knowledge bases can create frictions in innovation capacity. The heterogeneity of 

objectives and approaches, in particular between public institutions focused on broader societal impacts and 

private companies focused on market-driven applications, can hinder coherent progress and reduce 

innovation efficiency. Initially, increased diversification can enhance innovation by fostering a rich exchange 

of ideas and resources. However, as diversification increases, the complexity and potential conflicts between 

actors may reduce the ability to innovate effectively.   

 
 
 
3. Methodology and data 

 

3.1 Data 

 
We collect data covering the period 2003-2021 for 282 European regions1 on individual green patent 

applications to account for green innovation, and data on collaborative research projects funded under the 

FPs to represent green research networks within and between regions.  

 

 

 
1 We use the 2016 version of the NUTS2 classification. 
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Green patents in European regions 

We rely on microdata from the OECD REGPAT database, focusing on the number of green patents as an 

indicator of innovative activity. The database collects data held by the European Patent Office (EPO), which 

contains information on individual patent applications worldwide. We focus on the application filed to the 

EPO rather than using data on applications filed via the Patent Cooperation Treaty (the PCT). To regionalize 

individual applications, the address of the inventor is used as it is considered to be a better proxy of the location 

where the focal technology was developed (Bello et al., 2023). We consider the priority year for each 

application. 

 

As underlined in Favot et al. (2023), there are different methodologies developed by international 

organisations to identify patents on environmental-related technologies. In this paper, we apply the 

"Y02/Y04S tagging scheme" developed by the EPO in collaboration with the United Nations Environmental 

Programme (UNEP) and the International Centre on Trade and Sustainable Development (ICTSD) to find low-

carbon, sustainable, and climate change mitigation technologies (CCMTs).2 This methodology adds the Y 

sections to the 8 pre-existing standard sections (A-H) of the Cooperative Patent Classification (CPC). The 

tagging scheme was introduced to facilitate the identification of mitigation technologies in the energy sector 

(Veefkind et al. 2012). Later, the scheme was expanded to include all CCMTs covering several categories such 

as energy, greenhouse gases (GHG) capture, buildings, industry, transport, and waste and wastewater 

management (Angelucci et al., 2018). Table 1 reports the subclasses that allow us to identify the technologies 

relevant to environmental issues.  

 

 

 

 
2 Y02/Y04S tagging scheme is only applicable to patents with CPC codes.  
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Table 1: Y02/Y04S Tagging scheme (Favot et al., 2023). 

Code Description 

Y02 
Technologies or applications for mitigation or adaptation against climate 
change 

Y02A Technologies for adaptation of climate change 

Y02B 
Climate change mitigation technologies related to buildings, e.g. housing, 
house appliances or related end-user applications 

Y02C Capture, storage, sequestration or disposal of greenhouse gases 

Y02D 
Climate change mitigation technologies in information and communication 
technologies, i.e. information and communication technologies aiming at the 
reduction of their own energy use 

Y02E 
Reduction of greenhouse gas emissions, related to energy generation, 
transmission or distribution 

Y02P 
Climate change mitigation technologies in the production or processing of 
goods 

Y02T Climate change mitigation technologies related to transportation 

Y02W 
Climate change mitigation technologies related to wastewater treatment or 
waste management 

Y04 
Information or communication technologies having an impact on other 
technology areas 

Y04S 
Systems integrating technologies related to power network operation, 
communication or information technologies for improving the electrical power 
generation, transmission, distribution, management or usage, i.e. smart grids 

 

We count more than 100,000 green patent applications in European regions over the period 2003-2021. 

Figure 1 reports the geographical distribution of the number of patents. The map shows a clear clustering of 

the data. Core regions are characterised by a higher range of distribution (light red), suggesting a 

concentration of green innovation in central parts of Europe. Conversely, the peripheries, especially towards 

the north and some southern regions, show lower activity (light and dark green), indicating fewer patents 

within these areas. 

 

To check the strength of our analysis, we also employ the ENV-TECH classification (“Series of patent search 

strategies for the identification of selected environmental-related technologies”) developed by OECD (Haščič 

and Migotto, 2015).  This methodology is based on the International Patent Classification (IPC) and the CPC 
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codes and provides an alternative identification scheme for measuring innovation in environmental-related 

technologies. We follow the previous strategy for regionalizing the individual green patent applications.3  

 

 

Figure 1: Distribution of green patents at NUTS2 level. Sum over the period 2003-2021. Authors' calculation is based on 
the Y02/Y04S scheme. 
 

Green research networks 
 
The second variable of interest accounts for the green networks. To construct and measure the network, we 

use data on EU-funded research projects that support the formation of transnational collaborations on topics 

related to the green transition to measure green networks. The EU OPEN DATA PORTAL provides data on 

joint research projects funded under the Framework Programme (FP) for Research and Technology 

Development (RTD). We have selected projects with green aspects according to the following thematic priority 

(Table 2): FP6-SUSTDEV (2002–2006), FP7-ENERGY FP7-ENVIRONMENT FP7-TRANSPORT (2007–2012), 

and Horizon 2020 - SOCIETAL CHALLENGES (2014-2020). These programmes were selected according to 

 
3 Figure 1A in the Appendix shows the geographical distribution of green patents according the ENV-TECH classification. 
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their close connection to the environmental objective and their focus on the role of technological advancement 

in meeting these goals.4  

 

These data provide important insights as they include the geographical dimension and the sectoral affiliation 

of the participants, allowing us to examine the collaboration between countries and across different sectors. 

 

Green network variables are derived from the information on projects funded by FPs. Specifically, we consider 

the total number of collaborative links within and between regions, represented by the variable LINKS. In 

Figure 2, we show the total number of collaborations (LINKS) for each region. The figure underlines that most 

of the European regions are more inclined to create networks and some of them, especially in the centre of 

Europe, are able to pursue environmental innovation. The clusterization is less evident with respect to the 

patent distribution.  

 

Table 2: Thematic priority of FP programmes 

Thematic priority  

FP6 - (2002-2006) SUSTDEV: Sustainable development, global change and ecosystems  
FP7 – (2007-2013) ENERGY  
 ENVIRONMENT 
 TRANSPORT  

Horizon 2020 (2014-2020) 
H2020-EU.3.2. - SOCIETAL CHALLENGES - Food security, 
sustainable agriculture and forestry, marine, maritime and inland water 
research, and the bioeconomy 

 
H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and 
efficient energy 

 
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green and 
Integrated Transport 

 
H2020-EU.3.5. - SOCIETAL CHALLENGES - Climate action, 
Environment, Resource Efficiency and Raw Materials 

 

 

 
4 For details, see Meliciani et al. (2022). 
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Figure 2: Number of total collaborations at NUTS2 level. Authors' calculation based on FP-RTD data. 
 

The variable LINKS is then subdivided into collaborative links among residents within the same region 

(INTRALINKS) and collaborations between residents and external partners (EXTRALINKS). Additionally, we 

gather data on the number of green project participants, categorized by four institutional sectors to account 

for the composition of private and/or public networks. The variables PRC, HES, REC, and OTH correspond to 

the number of participants from private for-profit entities, higher or secondary education institutions, research 

centres or organizations, and other sectors, respectively. See Table 3 for details. 
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Table 3: Variable description and sources. 

Variable Description Source 

PAT Total number of green patent applications  
OECD REGPAT database; own 
elaboration 

LINKS  
Total number of region’s collaboration links (internal 
and outer) with other regions 

EU OPEN DATA PORTAL; own 
elaboration 

INTRALINKS Total number of region’s internal links  
EU OPEN DATA PORTAL; own 
elaboration 

EXTRALINKS Total number of region’s outer (interregional) links 
EU OPEN DATA PORTAL; own 
elaboration 

PART Number of project participants per region 
EU OPEN DATA PORTAL; own 
elaboration 

PRC  
Number of participants belonging to private for-profit 
entities 

EU OPEN DATA PORTAL; own 
elaboration 

HES 
Number of participants belonging to higher or 
secondary education institutions 

EU OPEN DATA PORTAL; own 
elaboration 

REC 
Number of participants belonging to research centres 
or organizations 

EU OPEN DATA PORTAL; own 
elaboration 

OTH Number of participants belonging to other 
EU OPEN DATA PORTAL; own 
elaboration 

RD R&D total expenditure on GDP Eurostat regional database 

EDU 
Ratio of population with tertiary education and total 
population 

Eurostat regional database 

POP Population in thousands Eurostat regional database 

 

 

3.2 Empirical approach 

To study the relationship between green innovation and networks, we estimate a knowledge production 

function as in Meliciani et al. (2022) and Di Cagno et al. (2014) at NUTS2 level. The first research question 

presented in Section 2 has been assessed by means of the following econometric model: 

ln 𝑃𝐴𝑇&,( = 𝛽+ + 𝛽- ln 𝐿𝐼𝑁𝐾𝑆&,( + 𝛽3𝑅𝐷&,( +	𝛽7𝐸𝐷𝑈&,( +	𝛽:𝑃𝑂𝑃&,( + 𝜃=,( + 𝑢&,(  (1) 

In Eq. (1), the dependent variable PAT is equal to (𝑝𝑎𝑡𝑒𝑛𝑡𝑠 + 1)5, where patents is the total number of green 

patent applications identified according the "Y02/Y04S tagging scheme" in each region 𝑖 at time 𝑡. For 

 
5 We follow Berkes and Nencka (2024) for the transformation of the dependent and network variables. We show results using the 
inverse hyperbolic sine of patents as an alternative transformation in Tables 4A and 5A in Appendix. The results are consistent with 
our baseline estimates. 
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robustness, we also use the “ENV-TECH classification” to construct the dependent variable. The results are 

shown in Table 6A in the Appendix. The parameter 𝛽- captures the correlation between the green innovation 

and the independent variable LINKS that accounts for the green networks, expressed in logarithm. We add a 

set of controls to account for R&D expenditure, human capital, and size. Specifically, RD measures the 

expenditure on general R&D as a percentage of GDP, EDU is a proxy for human capital calculated as the 

population with tertiary education and the total population, while POP accounts for the regional population. 

The data are taken from the Eurostat regional database (Table 3). The error term is denoted by 𝑢&,( . 

 

We further control for time-invariant unobservables by considering local specific characteristics that are not 

captured by other regressors. We include several types of fixed effects in the equation. Specifically, the model 

in Eq. (1) includes NUTS1 fixed effects by year (𝜃=,(). This allows us to better account for cross-sectional and 

temporal heterogeneity and to control for unobservables that may vary over time. In addition, we estimate the 

model by separately adding country fixed effects and NUTS1 fixed effects. In both estimations, year fixed effects 

are included to account for time shocks that affect regions simultaneously in a given year. Finally, the model 

was estimated including country fixed effects by year. However, the more comprehensive approach in Eq. (1) 

takes into account not only the specific economic characteristics of the macro area, but also the idiosyncratic 

shocks that affect the specific NUTS1 region in a given year, thereby increasing the accuracy and robustness 

of the estimated relationships between variables. 

 

Furthermore, we examine the role of domestic and external collaborations in Eq. (2), where the variable NET 

represents both INTRALINKS and EXTRALINKS. To better study the contribution of external collaboration to 

EI, we introduce EX_INTRA (Eq. 3), which is calculated as the ratio of EXTRALINKS to INTRALINKS. The 

network variables, except EX_INTRA, are expressed in logarithms. 
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ln 𝑃𝐴𝑇&,( = 𝛽+ + 𝛽- ln𝑁𝐸𝑇&,( + 𝛽3𝑅𝐷&,( +	𝛽7𝐸𝐷𝑈&,( +	𝛽:𝑃𝑂𝑃&,( + 𝜃=,( + 𝑢&,(																															 (2) 

ln 𝑃𝐴𝑇&,( = 𝛽+ + 𝛽-𝐸𝑋_𝐼𝑁𝑇𝑅𝐴&,( + 𝛽3𝑅𝐷&,( +	𝛽7𝐸𝐷𝑈&,( +	𝛽:𝑃𝑂𝑃&,( + 𝜃=,( + 𝑢&,(																															 (3) 

ln 𝑃𝐴𝑇&,( = 𝛽+ + 𝛽- ln𝑃𝑅𝐶&,( + 𝛽3 ln𝐻𝐸𝑆&,( + 𝛽7 ln𝑅𝐸𝐶&,( + 𝛽: ln𝑂𝑇𝐻&,(M- + 𝛽N𝑅𝐷&,( +	𝛽O𝐸𝐷𝑈&,( +	𝛽P𝑃𝑂𝑃&,(
+ 𝜃=,( + 𝑢&,(  (4) 

ln 𝑃𝐴𝑇&,( = 𝛽+ + 𝛽-𝑒𝑛𝑡𝑟𝑜𝑝𝑦( +	𝛽3𝑒𝑛𝑡𝑟𝑜𝑝𝑦(3 + 𝛽7 ln𝑃𝐴𝑅𝑇&,( + 𝛽:𝑅𝐷&,( +	𝛽N𝐸𝐷𝑈&,( +	𝛽O𝑃𝑂𝑃&,( + 𝜃=,( + 𝑢&,(  (5) 

Finally, to respond to the third research question, we study the contribution of different institutional sectors to 

EI. First, we estimate Eq. (4), trying to understand the role of PRC, HES, REC, and OTH. Second, in Eq. (5) we 

consider the diversification degree of network components by using the entropy index. The entropy or 

Shannon’s index (𝐻) is defined as: 

𝐻 = −U𝑝& 𝑙𝑛( 𝑝&)
W

&X-

 

 

 
(6) 

 

where pi represents the probability that the network is composed of participants belonging to sector i (PRC, 

HES, REC, OTH). This entropy, which can be used to measure the dispersion degree in a distribution, reaches 

its maximum when events are equiprobable (or uniformly distributed). If the value of the index is near zero, the 

degree of dispersion is lower. The higher the value of H, the greater the diversity. In our setup, an entropy 

equal to zero corresponds to a concentration of network composition in one of the four modes (PRC, HES, REC, 

OTH). To check the presence of nonlinearities, we add the squared value of entropy index. The number of total 

network participants (PART) is added as a control.   
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The analysis uses an unbalanced panel dataset. With respect to the original dataset described in Section 3.1, 

observations for which control variables were not available were dropped. This adjustment results in the final 

sample of the 235 NUTS2 regions observed, on average, for 12.2 years.  

 

4. Results  
 
In this section, we present the findings from our empirical investigation, which attempts to understand the role 

of green research networks in enhancing EI in European regions.  

 

Table 4 shows the estimates of the relationship between green patents and the number of internal and external 

collaborative links of regions (LINKS). In column (1), the model is estimated by including country and year fixed 

effects, while NUTS1 and year fixed effects are included in column (3). Moreover, to control for unobservables 

over time, we report the results including country fixed effects by year in column (2) and NUTS1 fixed effects 

by year in column (4). By examining the values of R-squared and Within R-squared, the last specification, 

which we have identified as the baseline, shows an appropriate compromise in explaining a significant portion 

of the overall variance and the variance within individual entities over time. We find a positive and significant 

coefficient of LINKS across all specifications (1)-(4). This indicates that the collaboration within the green 

research network significantly contributes to enhance the green innovation of the concerned areas. This result 

is consistent with the literature, which identifies networks as key drivers of innovation by enabling the sharing 

of knowledge and resources that individual firms may lack (Ghisetti et al. 2015; Fabrizi et al. 2016; 2024). By 

participating in green research networks, firms can benefit from external collaboration, as such innovations 

require multidisciplinary knowledge and investment in physical and human capital, as well as access to a wider 

range of resources and markets, thereby enhancing the innovative capacity of firms within the regions. This is 

in line with the open innovation mode, which emphasises outsourcing knowledge to fill the gap in technical 

characteristics that are essential for environmental innovation. Moreover, the control variables for R&D 
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expenditure (RD), education level (EDU), and population size (POP) also have significant and positive 

coefficients, indicating that these factors are crucial for green innovation alongside network collaboration. In 

Table 6A in the Appendix, we present the model's estimates using the "ENV-TECH classification" to identify 

the dependent variable. The results are quite similar and confirm the strength of our initial analysis. 

 

We then address the second research question about whether collaboration beyond regional boundaries 

promotes EI, providing further insights by distinguishing between the numbers of a region’s internal and 

external links. In columns (5)-(7), Table 4 reports the estimates of the model with NUTS1 fixed effects by year.6 

We find positive and significant coefficients for INTRALINKS and for extra-regional links (EXTRALINKS) in 

column (5) and (6) respectively. This suggests that both types of collaboration are beneficial for green 

innovation. Intraregional collaboration enhances local knowledge sharing and innovation capacity, 

supporting the idea that proximity fosters knowledge transfer. Interregional collaborations, on the other hand, 

broaden knowledge diffusion and access to diverse expertise and resources. When two or more regions are 

not geographically close, transregional networks can fill the gap in terms of knowledge sharing (Autant-

Bernard et al., 2007; Maggioni and Uberti, 2011). Moreover, improving knowledge diffusion can reduce the 

problem of knowledge concentration in specific advanced areas (Eugster et al., 2022).  

 

 

 

 

 

 

 

 
6 Table 2A in the Appendix shows the model’s estimates with country and year fixed effects, NUTS1 and year fixed effects, and country 
fixed effects by year. The estimates confirm the results of the baseline model. 
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Table 4: Estimates of the relationship between EI and green networks: total, intra, and extra links. 

 (1) (2) (3) (4) (5) (6) (7) 

        
ln(𝐿𝐼𝑁𝐾𝑆() 0.098*** 0.107*** 0.075*** 0.100***    

 (0.017) (0.020) (0.013) (0.019)    

ln(𝐼𝑁𝑇𝑅𝐴𝐿𝐼𝑁𝐾𝑆()     0.224***   
     (0.041)   

ln(𝐸𝑋𝑇𝑅𝐴𝐿𝐼𝑁𝐾𝑆()      0.101***  
      (0.019)  

𝐸𝑋_𝐼𝑁𝑇𝑅𝐴(        0.005*** 
       (0.002) 
        

𝑅𝐷(  22.959*** 23.809*** 15.616*** 16.071*** 15.201*** 16.065*** 17.703*** 

 (5.729) (6.032) (4.038) (4.761) (4.298) (4.756) (5.516) 

𝐸𝐷𝑈( 0.023*** 0.021*** 0.022*** 0.018*** 0.011** 0.018*** 0.029*** 

 (0.005) (0.006) (0.004) (0.005) (0.005) (0.005) (0.005) 

𝑃𝑂𝑃( 0.029*** 0.028*** 0.031*** 0.030*** 0.027*** 0.030*** 0.035*** 

 (0.003) (0.003) (0.003) (0.004) (0.003) (0.004) (0.004) 

Constant -0.102 -0.060 0.068 0.090 0.337*** 0.095 -0.001 

 (0.114) (0.130) (0.104) (0.125) (0.123) (0.125) (0.142) 

        

Country FE YES - - - - - - 
Time FE YES - YES - - - - 
Country*Time FE - YES - - - - - 
NUTS1 FE - - YES - - - - 
NUTS1*Time FE - - - YES YES YES YES 
        

Observations 2,863 2,740 2,858 2,521 2,521 2,521 2,521 
R-squared 0.814 0.833 0.859 0.893 0.894 0.893 0.887 

Within R-squared 0.534 0.559 0.453 0.557 0.562 0.557 0.535 

 
Note: The model was estimated by means of a linear regression with multiple fixed effects. Dropped singleton 
observations: 123 (2), 5 (3), and 342 (4-7). Standard errors clustered at the regional level in parentheses. *** p<0.01, ** 
p<0.05, * p<0.1.  
 

Due to collinearity issues, we cannot estimate the model with both intra and extra links simultaneously. 

Therefore, we compare the contribution of the two types of collaboration on EI by examining the ratio between 

the number of external links and internal links. The results are presented in column (7), where EX_INTRA 

shows a positive and significant coefficient. Given the total number of collaborations, an increase in the 

number of external collaborations relative to internal collaborations may contribute positively to enhance the 

green innovation capabilities of the regions. These results emphasize the importance of the transregional 
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geographical dimension of networks and the idea that cultural proximity, created through the networks, can 

compensate the geographical proximity for knowledge sharing (Boschma 2005).  

 

For what concerns the composition dimension, we have highlighted how the literature points to the 

combination of complementary skills of different network participants for creating significant synergies that 

can lead to stronger innovation. However, the heterogeneity of network participants can create frictions in the 

ability to innovate due to different knowledge bases and the dual use (business and academic) of new 

technologies. We address this point by studying first the differential contributions of institutional sectors to EI. 

Table 5 reports the baseline model’s estimates.7 

 

The coefficient for private for-profit entities (PRC) is positive and significant (column 1), suggesting that private 

sector participation is particularly significant in driving green innovation. In contrast, we do not find significant 

coefficients for other institutional sectors. When considering the sectors separately however, the higher 

education sector (HES) also shows a positive and significant coefficient (column 3). While the model that 

includes all sectors together appears to be more suitable for describing the phenomenon, both in terms of 

overall R-squared and within R-squared, we cannot exclude that the insignificant coefficient of HES may be 

due to the presence of collinearity.8 The strong capability of the private sector in driving green innovation is 

not surprising since private companies are more interested in patenting for commercialisation than public 

bodies, and, therefore, it is expected that networks composed of private firms would show a higher propensity 

for innovation.  

 

 

 
7 The results of the model with country and year fixed effects, NUTS1 and year fixed effects, and country fixed effects by year in Table 
3A in the Appendix are consistent with the baseline model. 

8 The correlation coefficient between PRC and HES is 0.69. 
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Table 5: Estimates of the relationship between EI and green networks: institutional sectors and diversification. 

 (1) (2) (3) (4) (5) (6) (7) 

        
ln(𝑃𝑅𝐶() 0.204*** 0.203***      

 (0.044) (0.047)      

ln(𝐻𝐸𝑆() 0.067  0.117**     

 (0.046)  (0.052)     

ln(𝑅𝐸𝐶() 0.017   0.076    

 (0.047)   (0.049)    

ln(𝑂𝑇𝐻() -0.026    0.068   

 (0.046)    (0.052)   

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(       0.040 0.360** 

      (0.077) (0.168) 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(3       -0.285** 

       (0.131) 

ln(𝑃𝐴𝑅𝑇()      0.222*** 0.234*** 

      (0.066) (0.065) 

𝑅𝐷(  14.773*** 15.370*** 14.780*** 16.251*** 16.928*** 14.773*** 14.690*** 

 (4.298) (4.530) (5.182) (5.219) (5.437) (4.342) (4.353) 

𝐸𝐷𝑈(  0.014** 0.013** 0.021*** 0.021*** 0.022*** 0.007 0.008 

 (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) 

𝑃𝑂𝑃(  0.027*** 0.026*** 0.030*** 0.030*** 0.031*** 0.024*** 0.025*** 

 (0.004) (0.003) (0.004) (0.004) (0.004) (0.003) (0.003) 

Constant 0.354*** 0.556*** 0.464*** 0.487*** 0.434*** 0.538*** 0.460*** 

 (0.135) (0.142) (0.153) (0.160) (0.149) (0.133) (0.136) 

        

NUTS1*Time FE YES YES YES YES YES YES YES 

        

Observations 1,916 1,916 1,916 1,916 1,916 1,916 1,916 

R-squared 0.893 0.896 0.893 0.892 0.892 0.897 0.898 

Within R-squared 0.557 0.522 0.508 0.505 0.503 0.528 0.531 

 
Note: The model was estimated by means of a linear regression with multiple fixed effects. 377 dropped singleton 
observations. Standard errors clustered at the regional level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

Then, we consider the diversification degree of network actors. In column (6), the estimates suggest a non-

significant coefficient of the entropy index. On the contrary, column (7) shows a nonlinear effect with a positive 

and significant coefficient for the entropy index and a negative and significant coefficient for its squared term. 

This suggests that the diversification is positively correlated with innovation, but the relationship is nonlinear. 

The interaction between an overly large number of actors belonging to different sectors increases the 

complexity and leads to potential conflicts between them, reducing the ability to innovate effectively. Foray 
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and Lissoni (2010) highlight that this issue stems from the differing knowledge bases and objectives of each 

actor. Therefore, while private actors are the primary drivers of green innovation, there is still a positive effect 

from the heterogeneity of the participants that make up the network and the synergies they generate. However, 

given the non-linear nature of the relationship, overly heterogeneous groups risk negatively impacting green 

patent creation. 

 

5. Conclusions 

In this paper we provide empirical evidence of how green research networks promoted by EU FPs enhance 

the capacity of environmental innovation in European regions.  

 

We start from the hypothesis that firms need to seek new knowledge and expertise beyond their own 

boundaries by collaborating with other actors for innovating, given the unique nature of green technologies 

and the specialised knowledge required for EI. In particular, we ask whether the collaborations in and between 

regions are positively related to EI and assess whether private companies, public research institutions, and 

universities contribute differently to increasing knowledge, leading to a heterogeneous impact on green 

innovation. Additionally, we examine the role of network diversification on innovation, considering the 

synergies and challenges of the interaction among different actors. 

 

Our findings support the role of collaboration in green research networks as a driving force for EI in European 

regions, thus supporting the role of the open eco-innovation mode (Ghisetti et al., 2015) also at the regional 

level. By participating in networks, regions can benefit from external collaboration and thus increase their 

innovative capacity. Both internal and external collaborations are beneficial for EI. However, interregional 

cooperation broadens knowledge diffusion and access to different expertise and resources. Transregional 

networks can bridge the knowledge sharing gap even when regions are not geographically close, supporting 



© A.Fabrizi, C. Fiorelli, V. Meliciani                                   LEAP                               Working Paper 14/2024                          July 30, 2024 
 
 

23 
 

the view that knowledge sharing can be facilitated not only by geographical proximity but also by cultural 

proximity (Boschma, 2005). This proximity can be facilitated also through the collaboration of heterogeneous 

actors with different types of knowledge, integrating the fundamental research carried out in universities with 

the applied research and development activities of private companies (Etzkowitz and Leydesdorff, 2000). 

However, while the diversity of participants within a network fosters synergies that eventually lead to an 

enhanced innovative capacity, in cases of extreme heterogeneity, these are likely to lead to conflicts and lower 

innovation efficiency (Foray and Lissoni, 2010). 

 

This paper contributes to an already existent stream of literature in this area by empirically testing the influence 

of green networks on regional innovation capacity. It emphasizes the role EU-supported cooperative initiatives 

and policies can play in boosting innovation and in contributing to the EU's achievement of climate neutrality 

by 2050 through green innovation.  

 

While FPs are an important instrument for fostering green innovation, Europe is lagging behind the US and 

China in terms of industrial green policies. The proposal to introduce a European sovereign fund for financing 

investments for the twin transition is still far from being realised. The experience of European Framework 

Programmes where universities, firms and research centres from different European regions collaborate in 

projects funded by common European resources is a model that can be adapted also to the implementation of 

green industrial policies.   

 

In most European countries and regions, the main problem still appears to be the low propensity of academic 

institutions to collaborate with firms and to transform new knowledge into new processes and products. The 

formation of networks is an important tool for fostering private-public collaborations and stimulating the 

applicability of new ideas in the commercial sphere. 
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While this paper sheds light on the role played by green networks in green innovation, further studies could 

identify the characteristics of the networks that are more beneficial to green innovation by exploring not only 

the heterogeneity of institutional participants but also of the regions involved in the network. Moreover, the 

heterogeneity of effects across regions with different levels of technological intensity and absorptive capacity 

could be investigated also with the purpose of identifying the impact of green research networks on the 

evolution of regional green innovation disparities in the attempt to study the coherence between R&D and 

regional cohesion policies.   
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Appendix 
 
 

Table 1A: Variable descriptive statistics. 

Variable Mean Std. Dev. Min Max 

PAT 19.99 42.38 0.00 499.00 
LINKS  195.25 348.90 0.00 4264.00 
INTRALINK  13.40 28.92 0.00 444.00 
EXTRALINKS 181.85 321.18 0.00 3820.00 
PRC  5.57 12.66 0.00 197.00 
HES 2.80 4.77 0.00 45.00 
REC 3.00 9.05 0.00 145.00 
OTH 1.94 6.73 0.00 146.00 
RD 0.01 0.01 0.00 0.13 
EDU 27.15 10.11 6.10 74.70 
POP 18.23 15.14 0.26 123.49 

 

 

 

 

Figure 1A: Distribution of green patents at NUTS2 level. Sum over the period 2003-2021. Authors' calculation based on 
the ENV-TECH classification. 
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Table 2A: Estimates of the relationship between EI and green networks: intra and extra links. 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

          

ln(𝐼𝑁𝑇𝑅𝐴𝐿𝐼𝑁𝐾𝑆() 0.209*** 0.239*** 0.154***       

 (0.038) (0.046) (0.027)       

ln(𝐸𝑋𝑇𝑅𝐴𝐿𝐼𝑁𝐾𝑆()    0.099*** 0.108*** 0.076***    

    (0.018) (0.020) (0.013)    

𝐸𝑋_𝐼𝑁𝑇𝑅𝐴(        0.004*** 0.004** 0.004*** 

       (0.002) (0.002) (0.001) 

          

𝑅𝐷(  22.513*** 23.278*** 15.123*** 22.956*** 23.810*** 15.602*** 24.910*** 25.877*** 16.964*** 

 (5.382) (5.602) (3.822) (5.730) (6.035) (4.033) (6.475) (6.865) (4.482) 

𝐸𝐷𝑈(  0.016*** 0.011* 0.018*** 0.023*** 0.021*** 0.022*** 0.033*** 0.033*** 0.029*** 

 (0.005) (0.007) (0.004) (0.005) (0.006) (0.004) (0.005) (0.006) (0.004) 

𝑃𝑂𝑃(  0.026*** 0.025*** 0.029*** 0.029*** 0.028*** 0.031*** 0.034*** 0.034*** 0.035*** 

 (0.003) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) 

Constant 0.143 0.236* 0.228** -0.099 -0.057 0.071 -0.163 -0.155 0.024 

 (0.118) (0.141) (0.103) (0.114) (0.130) (0.104) (0.122) (0.139) (0.114) 

          

Country FE YES - - YES - - YES - - 

Time FE YES - YES YES - YES YES - YES 

Country*Time FE - YES - - YES - - YES - 

NUTS1 FE - - YES - - YES - - YES 

          

Observations 2,863 2,740 2,858 2,863 2,740 2,858 2,863 2,740 2,858 

R-squared 0.815 0.835 0.860 0.814 0.833 0.859 0.806 0.824 0.856 

Within R-squared 0.539 0.565 0.454 0.534 0.559 0.454 0.515 0.536 0.439 

 
Note: The model was estimated by means of a linear regression with multiple fixed effects. Dropped singleton 
observations: 123 (2)-(5)-(8) and 5 (3)-(6)-(9). Standard errors clustered at the regional level in parentheses. *** p<0.01, ** 
p<0.05, * p<0.1. 
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Table 3A: Estimates of the relationship between EI and green networks: institutional sectors and 
diversification. 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

          
ln(𝑃𝑅𝐶() 0.222*** 0.268*** 0.112***       

 (0.039) (0.046) (0.029)       

ln(𝐻𝐸𝑆() 0.014 0.027 0.037       

 (0.041) (0.048) (0.032)       

ln(𝑅𝐸𝐶() 0.012 0.006 0.035       

 (0.044) (0.049) (0.034)       

ln(𝑂𝑇𝐻() -0.017 -0.032 -0.019       

 (0.033) (0.039) (0.029)       

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(     -0.002 -0.028 0.074 0.213 0.274* 0.186 

    (0.062) (0.068) (0.051) (0.142) (0.155) (0.117) 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(3       -0.187* -0.262** -0.098 

       (0.115) (0.127) (0.091) 

ln(𝑃𝐴𝑅𝑇()    0.209*** 0.263*** 0.120*** 0.215*** 0.271*** 0.123*** 

    (0.055) (0.066) (0.042) (0.055) (0.065) (0.042) 

𝑅𝐷(  22.388*** 22.721*** 15.186*** 18.929*** 19.627*** 14.082*** 18.782*** 19.450*** 14.038*** 

 (5.548) (5.720) (3.906) (4.843) (4.928) (3.918) (4.878) (4.985) (3.927) 

𝐸𝐷𝑈(  0.018*** 0.014** 0.020*** 0.017*** 0.011 0.018*** 0.018*** 0.012* 0.018*** 

 (0.006) (0.007) (0.004) (0.006) (0.007) (0.004) (0.006) (0.007) (0.004) 

𝑃𝑂𝑃(  0.026*** 0.025*** 0.030*** 0.025*** 0.023*** 0.028*** 0.025*** 0.024*** 0.028*** 

 (0.003) (0.004) (0.003) (0.003) (0.004) (0.003) (0.003) (0.004) (0.003) 

Constant 0.172 0.263 0.249** 0.216* 0.339** 0.357*** 0.161 0.260* 0.330*** 

 (0.134) (0.164) (0.108) (0.121) (0.141) (0.114) (0.129) (0.154) (0.112) 

          

Country FE YES - - YES - - YES - - 

Time FE YES - YES YES - YES YES - YES 

Country*Time FE - YES - - YES - - YES - 

NUTS1 FE - - YES - - YES - - YES 

          

Observations 2,293 2,174 2,287 2,293 2,174 2,287 2,293 2,174 2,287 

R-squared 0.815 0.835 0.858 0.814 0.838 0.859 0.815 0.839 0.859 

Within R-squared 0.538 0.566 0.449 0.507 0.536 0.419 0.508 0.538 0.419 

 
Note: The model was estimated by means of a linear regression with multiple fixed effects. Dropped singleton 
observations: 119 (2)-(5)-(8) and 6 (3)-(6)-(9). Standard errors clustered at the regional level in parentheses. *** p<0.01, ** 
p<0.05, * p<0.1. 
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Table 4A: Estimates of the relationship between EI and green networks: inverse hyperbolic transformation. 

 (1) (2) (3) (4) 

     

𝐿𝐼𝑁𝐾𝑆(  0.106***    
 (0.020)    

𝐼𝑁𝑇𝑅𝐴𝐿𝐼𝑁𝐾𝑆(   0.225***   
  (0.040)   

𝐸𝑋𝑇𝑅𝐴𝐿𝐼𝑁𝐾𝑆(    0.107***  
   (0.020)  

𝐸𝑋_𝐼𝑁𝑇𝑅𝐴(     0.007*** 
    (0.002) 
     

𝑅𝐷(  16.458*** 15.401*** 16.447*** 18.327*** 
 (5.179) (4.637) (5.172) (6.028) 

𝐸𝐷𝑈(  0.024*** 0.016*** 0.024*** 0.037*** 
 (0.006) (0.006) (0.006) (0.006) 

𝑃𝑂𝑃(  0.035*** 0.031*** 0.035*** 0.041*** 
 (0.004) (0.004) (0.004) (0.005) 
Constant 0.127 0.406*** 0.132 0.045 

 (0.150) (0.146) (0.150) (0.171) 

     
NUTS1*Time FE YES YES YES YES 
     

Observations 2,521 2,521 2,521 2,521 
R-squared 0.887 0.888 0.887 0.881 

Within R-squared 0.538 0.543 0.538 0.514 

 
Note: The model was estimated by means of a linear regression with multiple fixed effects. The results obtained with 
country and year fixed effects, NUTS1 and year fixed effects, and country fixed effects by year are available upon request. 
342 dropped singleton observations. Standard errors clustered at the regional level in parentheses. *** p<0.01, ** 
p<0.05, * p<0.1.  
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Table 5A: Estimates of the relationship between EI and green networks: institutional sectors and 
diversification. Inverse hyperbolic transformation. 

 (1) (2) (3) 

    
𝑃𝑅𝐶(  0.192***   

 (0.042)   

𝐻𝐸𝑆(  0.063   

 (0.040)   

𝑅𝐸𝐶(  0.024   

 (0.043)   

𝑂𝑇𝐻(  -0.017   

 (0.041)   

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(   0.046 0.347* 

  (0.093) (0.201) 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(3   -0.264* 

   (0.157) 

𝑃𝐴𝑅𝑇(   0.226*** 0.232*** 

  (0.067) (0.066) 

𝑅𝐷(  14.959*** 14.981*** 14.931*** 

 (4.595) (4.683) (4.705) 

𝐸𝐷𝑈(  0.018*** 0.011 0.013* 

 (0.007) (0.007) (0.007) 

𝑃𝑂𝑃(  0.031*** 0.028*** 0.028*** 

 (0.004) (0.004) (0.004) 

Constant 0.472*** 0.647*** 0.570*** 

 (0.160) (0.158) (0.161) 

    

NUTS1*Time FE YES YES YES 

    

Observations 1,916 1,916 1,916 

R-squared 0.886 0.891 0.892 

Within R-squared 0.537 0.507 0.509 

 
Note: The model was estimated by means of a linear regression with multiple fixed effects. The results obtained with 
country and year fixed effects, NUTS1 and year fixed effects, and country fixed effects by year are available upon request. 
377 dropped singleton observations. Standard errors clustered at the regional level in parentheses. *** p<0.01, ** p<0.05, 
* p<0.1. 

 

 

 

 

 

 

 



© A.Fabrizi, C. Fiorelli, V. Meliciani                                   LEAP                               Working Paper 14/2024                          July 30, 2024 
 
 

34 
 

 

Table 6A: Estimates of the relationship between EI and green networks: ENV-TECH classification. 

 (1) (2) (3) (4) 

     
ln(𝐿𝐼𝑁𝐾𝑆() 0.118*** 0.129*** 0.091*** 0.122*** 

 (0.021) (0.025) (0.017) (0.024) 
     

𝑅𝐷(  25.551*** 26.252*** 15.967*** 15.949*** 

 (6.543) (6.788) (4.345) (5.011) 

𝐸𝐷𝑈( 0.023*** 0.021*** 0.022*** 0.019*** 

 (0.006) (0.007) (0.005) (0.007) 

𝑃𝑂𝑃( 0.036*** 0.036*** 0.040*** 0.038*** 

 (0.004) (0.004) (0.004) (0.005) 

Constant 0.238* 0.264* 0.413*** 0.418** 

 (0.141) (0.158) (0.136) (0.165) 

     

Country FE YES - - - 
Time FE YES - YES - 
Country*Time FE - YES - - 
NUTS1 FE - - YES - 
NUTS1*Time FE - - - YES 
     

Observations 2,863 2,740 2,858 2,521 
R-squared 0.773 0.794 0.818 0.862 

Within R-squared 0.474 0.498 0.387 0.491 

 
Note: The model was estimated by means of a linear regression with multiple fixed effects. Dropped singleton 
observations: 123 (2), 5 (3), and 342 (4). Standard errors clustered at the regional level in parentheses. *** p<0.01, ** 
p<0.05, * p<0.1.  
 


