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Abstract: Drawing on the methodological framework from Acemoglu and Restrepo (2019), 
this paper investigates the influence of technological innovations on the economy-wide 
wage bill of four main European countries. The model-based decomposition applied to 
France, Germany, Italy and Spain shows that: a) the wage-bill deceleration since the 1990s 
has mainly been productivity driven; b) this deceleration at the same time fell short of 
productivity dynamics, giving rise to some degree of wage share compression; c) 
contraction of labor-intensive tasks played a relevant role in such compression; d) this was 
reflected in an acceleration of technology-induced labor displacement, not sufficiently offset 
by the reinstatement of new labor-intensive tasks; e) among relevant national specificities, 
a common feature of the considered countries was labor displacement in service sectors, 
(particularly the low-end ones). Econometric analysis of factors influencing the 
displacement effect confirms correlation with specified technology variables (i.e. 
automation-exposed jobs and investment in software capital).  
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1. Introduction 

The discussion on the effect of technological progress on wages and employment is as old as 
economic science itself. The first arguments about the negative impacts on workers exerted by 
mechanization date back to Ricardo and Marx. They were then taken up by Keynes (1930) and 
Leontieff (1952), highlighting the peril of technological unemployment. Right from the beginning of 
the debate, these risks have been opposed by the counterargument of the positive compensation 
effects coming from machine adoption, related to both the creation of new job opportunities and to 
the increase in demand for old and new goods (and hence employment) brought about by growing 
productivity (early arguments along this line can be found in Steuart and Say, see Piva and Vivarelli, 
2017). The recent new wave of automation technologies, which coexists with deteriorating labor-
markets, brought new life to this discussion and intensified the controversy between pessimists and 
optimists. The former think that the very nature of the current technological progress (Artificial 
Intelligence and robots) is different from the past phases of progress, and that it is capable of leading 
to widespread displacement of human labor (Frey and Osborne, 2017; Bubbico and Freytag, 2018; 
Korinek and Stiglitz, 2019). The latter, on the contrary, observe that ongoing automation processes 
are no different from previous ones and, as those of earlier periods, will in the end raise labor 
demand, thus positively affecting both wages and employment (Arntz et al., 2016; Bessen, 2020).   

At the same time of the revival of such an old debate, the way of thinking about the influences of 
technological change on productivity and labor demand has gone through a relevant revision. In 
standard modeling, technology progress is a productivity-strengthening force that either augments 
one effective input (factor augmenting technical change) or increases the output produced by a given 
combination of inputs (Hicks-neutral technical change). In this framework the possibility that 
technology negatively affects labor (equilibrium wage and/or wage share) is quite limited, depending 
basically on the capital/labor elasticity of substitution that has to assume values that are difficult to 
observe in reality (Acemoglu and Restrepo 2018a). The new framework that allows for a larger scope 
of technology is the task-based model built on works developed in the last couple of decades, such 
as those by Autor et al. (2003), Acemoglu and Autor (2011) and Acemoglu and Restrepo (2018b, 
2018c and 2019). According to this modeling, output is produced by combining not inputs, but tasks 
that are differently allocated to labor and capital. New technologies not only affect factor 
productivities in specific tasks and across all the tasks (as in standard model), but crucially change 
the factor task content of production. Particularly automation, beside raising productivity, substitutes 
capital for human labor in previously labor-intensive tasks, leading to a displacement that 
unambiguously squeezes the wage share. The effect of automation on labor demand therefore 
depends on the balancing between the positive and negative influences it exerts on productivity and 
wage share respectively. At the same time, as history shows, automation periods are also 
accompanied by more or less intense creation of new, previously inexistent, activities in which labor 
has a comparative advantage. The introduction of technologies reinstating labor intensive tasks 
impacts positively both productivity and wage share. The so-called change in task content is the net 
result between displacement and reinstatement effects brought about by different technical changes. 
The influence of technology on labor demand depends therefore on the interplay of quite different 
and opposing forces, whose relative effects can vary in time (positive results of previous 
technological waves may not replicate if you do not strike the right balance between opposing forces) 
and space (experience may differ according to how such an interplay takes place in different 
economies). 

The task-based framework is applied by Acemoglu and Restrepo (2019, henceforth, for brevity we 
refer to this work as A-R) to implement a decomposition model aimed at singling out the different 
effects of technology change (in the form of both automation and introduction of new tasks) on US 
labor demand since the postwar period. They find that in the last 30 years, contrary to what happened 
in the former period, both the wage bill (proxy of labor demand) and the wage share of American 
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workers have been negatively affected by a contraction in the labor content in production tasks. This 
was due to a deceleration in the introduction of technologies reinstating labor and a concurrent 
acceleration of technologies displacing it. 

In this work we apply the A-R decomposition model to study the role of the task-content change in 
affecting the wage bill of Germany, France, Italy and Spain over a 47-year period (1970-2017). We 
expand the original A-R specification by relaxing the assumption of perfect competition in the 
products market, thus allowing ourselves to explicitly account for the influences of markup changes 
on the wage bill (through the wage-share channel). Furthermore, we go deeper in exploring the 
changes in task content by industry to highlight the different sectoral contributions to displacement 
and reinstatement effects in the considered countries. The decomposition indicates that, even in 
presence of remarkable country-specific heterogeneities, a deceleration of the wage bill growth takes 
place in most countries in the last 30 years. A weaker productivity growth is the main driver of such 
a slowdown, although this does not exhaust the whole story as the wage share compression plays 
a role too in varying degrees across analyzed economies. The decomposition exercise points out 
that such reduction also reflects adverse shifts in task content, those related to automation-induced 
labor displacement not adequately offset by the creation of new labor-intensive tasks. In the 
European economies, these phenomena are less pronounced than those highlighted by A-R for the 
US, but they are nonetheless detectable. Particularly, there is a difference in size when comparing 
the displacement effect experienced by the EU countries with that of the US. Moreover, the 
considered countries registered some (although insufficient) acceleration of the reinstatement effect 
in the most recent period, against the deceleration shown in the US according the A-R evidence. A 
common feature shared by most of the analyzed European countries is the role played by low-tech 
services in contributing to displacement of labor-intensive tasks, while in the US experience 
manufacturing is the mostly exposed sector to the acceleration of the displacement effect. These 
same low-tech services appear to contribute to labor reinstatement in Italy and Spain. 

The work is organized as follows. Section 2, reviewing the empirical literature of the effects of 
automation on labor-market variables in the European countries, illustrates the rather varied 
backdrop against which the analysis is set. Section 3 goes through the theoretical underpinnings of 
the A-R decomposition model. Section 4 is dedicated to the description of data sources and 
discusses adopted calibrations and approximations. Section 5 shows the results of the 
decomposition model applied to the European countries. Section 6 investigates the driving forces of 
what was identified in the decomposition exercise as the labor displacement effect. Section 7 
concludes the paper. 

 

2. Empirical evidence on European countries.  

Besides the A-R decomposition we refer to, several studies are available on the effects of automation 
on labor-market variables. These studies differ in scope and methods, and, possibly due to a lack of 
analytical common ground, their findings are sometimes also contradictory. According to the 
literature, the evidence of a negative correlation between automation and levels of either 
employment or wages (or both) immediately appears much more heterogeneous in the EU than the 
US.1 Empirical results of studies conducted on EU Member States differ according to countries and, 
even within the same economies, according to methodologies/data/periods (see Table 1 for a 
summary). 

Chiacchio et al. (2018) applied a local market equilibrium model (as in Acemoglu and Restrepo 2017) 
to verify the impact of robot penetration in six EU countries. They show a significant labor 

 
1 Regarding the US experience, see Acemoglu and Restrepo (2017), as well as Acemoglu and Restrepo (2019) 
and Bergholt at al. (2019) for aggregate-level evidence.  
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displacement effect, but a less relevant impact on wages. In a more recent publication, Klenert et al. 
(2020) do not find evidence of a job loss, nor of a reduction of employment levels among low skill 
workers, as a consequence of the introduction of industrial robots in Europe. On the contrary, using 
the International Federation of Robotics data, from 1995 to 2015 in 28 EU countries, these authors 
reported a positive trend (even if weak) in the association between robots and overall employment. 
They estimate an employment increase of 0.2% per each robot introduced for every 1.000 workers. 
In fact, to similar conclusions pointed the work of Jäger et al. (2016) on the impact of robotics on 
manufacturing occupation in the main EU countries, highlighting the productivity increases (even in 
terms of labor) which can be gained thanks to the use of industrial robots. However, they did not 
obtain any significant evidence (neither of displacement nor of reinstatement) related to the 
employment levels of surveyed firms within the scope of the 2012 European Manufacturing Survey. 
Researchers from the EU Commission (Peschner et al., 2018) have also demonstrated how, 
notwithstanding a displacement mainly affecting routine tasks in manufacturing, robotics industries 
directly generated new employment and possible job losses have often been complemented by the 
creation of new opportunities, in innovation and high-tech production sectors and services where 
workers tasks proved supplementary to those of capital.  

However, further studies suggest that, in the occurrence of a totally digitalized working environment, 
in Germany up to three million jobs could be lost (half of which would represent 1.5 million of current 
jobs replaced, and the other half would stand for 1.5 million of future jobs never needed) by 2025 
(Wolter et al., 2016); and the jobs at risk of automation account for about 59% of total (Brzeski and 
Burk, 2015). This risk drops to 37.5% in Finland, but considering the high-risk range only (Pajarinen 
and Rouvinen, 2014). In support of this, an extensive study estimating the share of recently 
automated employment in 24 EU countries over the 1990-2010 thirty-year period quantifies the total 
jobs expected to be fully substituted by technology in the next decade in the same countries as 
ranging from 21% (Ireland) to 45% (Italy) (Lordan, 2018).  

Moreover, a deeper assessment of national scenarios produced contrasting results. Other authors 
(Dauth et al., 2017; Graetz and Michaels, 2017) focused on the German case, which is the main 
European country in terms of number of robots employed, and they did not detect negative effects 
on occupation. Conversely, more recently Bonfiglioli et al. (2020) verified how French firms that 
imported robots between 1994 and 2013 registered both an increase in efficiency and yet a decrease 
of labor demand. On this same line, Acemoglu et al. (2020) conclude that the adoption of industrial 
robots in France, between 2010 and 2015, has had a negative impact on both employment and wage 
share. However, Domini et al. (2017) and then Aghion et al. (2020) instead reported on automation’s 
mainly positive effect in France. Concerning Italy, Dottori (2020) found instead a negative impact of 
robot adoption only in the case of manufacturing, while the significance of the relation vanishes when 
considering coexisting and relevant phenomena, as in the use of further technologies (e.g. ICT) or 
the influence of international trade. Furthermore, microeconomic analyses at workers level have 
generally shown that those from manufacturing sectors tend not to experience detriments from 
robotization, with their wages even slightly increasing (based on the length of stay in the initial firm). 
Finally, it appears that robot diffusion oriented the new workforce towards less mechanized 
productions. Koch et al. (2019) in the Spanish case obtained a positive effect on firms that adopted 
industrial robots (with a net job creation rate of 10% and productivity gains by up to 25% over a 4-
year period), while a negative one on those who did not, for which a substantial loss of jobs occurred; 
the overall labor share seems to be penalized. With a similar study on Dutch data, Bessen et al. 
(2019) refuse the hypothesis of a complete labor displacement by automation. Distinguishing firms 
based on their choices to invest or not in automation, these authors obtain opposite results compared 
to Koch et al. (2019): employees of automating firms turn out to have either experienced a yearly 
wage cut of 11% or left their job (2 percentage points more likely than their counterparts in non-
automating firms), with an overall negative effect on labor (cost) share. 
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The heterogeneous findings of different analyses also show the relation of the objects of these 
studies with the specificities of the economic structures of considered countries. The total effect of 
automation on labor will depend also on the workforce exposition rate to these technologies and, 
bearing in mind for example that 99% of installed robots in the EU pertain to manufacturing (IFR 
database), the result will strongly be influenced by the weight of this sector within the national 
production system (Chiacchio et al., 2018). In addition, a variety of results relies on technical 
differences of used datasets: it seems that analyses on microeconomic statistics tend to produce 
non-significant or positive estimates, while aggregate data at sectoral or national levels more often 
provide a negative outcome (Klenert et al., 2020). 

A relevant aspect of the automation effects on jobs is related to routine tasks, which are considered 
more at risk of being automated. For this same reason, they can be used (as we do in Section 6) as 
a proxy to quantify the penetration of automation technologies when variables directly measuring 
technological change are missing. That is why, together with studies on robots and other automation 
technologies (e.g. IT, AI, etc.), it is relevant here to refer also to the work of the scholars who have 
delved further into the polarization of occupations related to robotization of production tasks (Darvas 
and Wolff, 2016, on six EU countries), or the pervasive impact of routine tasks on labor market (Goos 
et al., 2016, in sixteen countries of western Europe), finding a significant increase in Europe as well. 
In the Norwegian case, Akerman et al. (2015) analyzed the IT investment effects, suggesting that 
adopting these technologies is complementary in case of non-routine tasks assigned to specialized 
workers, while it tends to substitute labor in the opposite case of routine tasks performed by low-
average skilled workers. In a similar manner, Gaggl and Wright (2017) have reported that the ICT 
technologies adoption in the UK supported the non-routine and highly-cognitive expertise, but often 
in association to increased wage inequalities within the firms. With a crosscutting analysis on 27 EU 
countries, Gregory et al. (2019) show that the substitution of routine tasks by automating 
technologies (routine-replacing technological change, RRTC), occurring between 1999 and 2010, 
produced substantial labor displacement, but at the same time a net employment increase was made 
possible by a concurrent and significant reinstatement effect. The same authors conclude, however, 
that this result is conditional on the distribution of technological progress gains.  

On the same page, the elaboration made by Eurofound (2016, 2017) on monitoring job tasks 
changes in the EU explains how identifying the effect of technology, as those of international trade 
or other factors affecting production inputs, is not enough to adequately estimate the related change 
in employment levels. Adopting a task-based approach makes evident the role of each single task, 
which have no real value on their own but do count in their interrelation with each other in a specific 
production combination, and clarifies that their recombination is what determines the final effect on 
employment structure.  

Given this quite varied backdrop, our contribution focuses on the influence of automation 
technologies on the most comprehensive measure of the labor-market situation, namely the 
economy-wide wage-bill changes that are affected by the intensity with which both positive and 
negative technology-induced effects take place. As will become apparent in the empirical testing, we 
do not limit our analysis to the strict automation definition of technological change as available in 
automation-related statistics (such as automation-exposed jobs or multi-use industrial robots) 
because they do not seem completely adequate to allow for the displacement phenomena occurring 
in non-industrial sectors that are relevant in the considered economies. We perform our analysis by 
applying a methodology originally tailored for the specific case of the US labor market and, as such, 
useful for providing a directly comparable finding about the main EU countries. 
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Studied technology Country Authors Effects on labor Notes / Analyzed period

Automation
Finland Pajarinen and Rouvinen (2014)-   (workers) % high risk of automation / 2012
France Aghion et al. (2020) +   (workers) 1994-2015
France Domini et al. (2017) +   (workers) 2002-2015
Germany Brezski e Burk (2015) -   (workers) % risk of automation / 1994-2014
Netherlands Bessen et al. (2019) -   (workers) 2000-2016

-   (wages)
20 UE countries Gregory et al. (2019) 1999-2010
238 regions +   (workers) reinstatement > displacement
EU Peschner et al. (2018) +   (workers) robotics / 1993-2016

-  (routine tasks) manufacturing

Industrial robots
France Bonfiglioli et al. (2020) -   (workers) 1994-2013
France Acemoglu et al. (2020) -   (workers) 2010-2015

-   (labor share)
Germany Dauth et al. (2017) 0   (workers) 1994-2014
Italy Dottori (2020) +   (wages) 1993-2016

0   (workers) economy-wide
-   (workers) manufacturing

Spain Koch et al. (2019) +   (workers) 1990-2016
-   (labor share)
+    (wages)

6 EU countries Chiacchio et al. (2018) -   (workers) 1995-2007
0    (wages)

7 EU countries Jäger et al. (2016) 0   (workers) manufacturing / 2009-2012
24 EU countries Lordan (2018) -   (workers) % automatable jobs / 1990-2010
EU28 Klenert et al. (2020) +   (workers) 1995-2015

ICT/ artificial intelligence
 Germany Wolter et al. (2016) -   (workers) forecasts 2017-2035

Norway Akerman et al. (2015) -  (routine tasks) low skill > high skill /2001-2007
United Kingdom Gaggl and Wright (2017) -   (wages) 2001-2004

Table 1. Overview of studies on the innovation impact on labor in European countries
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3. Model-based decomposition of the wage bill: the A-R framework 

In this section we go through the rationale and theoretical underpinnings of the A-R model that is 
then applied to the case of the European countries. 

Wage-bill identity 

At the base of the decomposition exercise is the economy-wide wage-bill identity that, at time t, is 
given by 

𝑊	#𝐿# ≡ 𝑃#𝑌#	𝑥	𝑠#* ≡ 𝑃#𝑌#	𝑥 ∑ 𝜒-#- 𝑠-#* ………………… (1) 

Where Wt  is the wage rate, Lt is the number of persons employed, Yt  is the real value added, Pt is 
the value-added price index,	𝑠#* is the wage share, 𝜒-#   is the weight of the ith-sector in the value 
added of the economy .𝜒-# =

012312
0232

4 and 𝑠-#*   is ith-sector wage share .𝑠-#* =
512612
012312

4. Expression (1) 
allows for an exact decomposition of the wage-bill log-changes in the log changes of the right-hand 
side variables, namely the economy-wide value added and the wage share. The latter can in turn be 
exactly decomposed in the log changes of sector composition and sector wage shares. The insertion 
of this simple identity in the A-R formal model considerably enlarges the scope of the interpretation 
of the economic forces affecting it.  

Task-dependent wage share 

The task-based framework of Acemoglu-Restrepo (2019) exploits the wage-bill identity to highlight 
the influence of task changes on labor demand, where the latter is identified with the changes of the 
wage bill that summarize combinations of (un-investigated) variations in the price and quantity of the 
labor input. The channel through which changes in tasks affect the wage bill is a task-dependent 
formulation of the sector wage shares,	𝑠-#* . To arrive at a task-dependent expression of the wage 
share, the A-R model assumes that output (real value added) is obtained by the combination of a 
range of tasks which, in turn, are produced using capital and labor. Automation takes place whenever 
capital substitutes for labor in some (previously) labor-intensive tasks. In this framework, 
(equilibrium) output can be represented as a constant elasticity substitution (CES) function of capital 
and labor. 

𝑌-# = 𝛱-	# 9𝛤-#
;
<=𝐴-#6 𝐿-#?

<@;
< +	(1 − 𝛤-#)

;
<=𝐴-#F 𝐾-#?H

<
<@;

 

Where	𝐴-#6  and 𝐴-#F  are labor- and capital-augmenting technologies increasing the productivity of labor 
(L) and capital (K) in all the tasks performed with these inputs; σ≥ 0 is the elasticity of substitution 
between tasks, and it coincides with the derived elasticity of substitution between capital and 
labor;	𝛱-	# is the total factor productivity. As such, the former expression is quite similar to a standard 

CES production function but for the fact that the share parameters, 𝛤-#
O
P and (1 − 𝛤-#)

O
P, are not 

constant, as they depend on task contents	that modify whenever automation processes and 
introduction of new tasks occur. Particularly, the term 𝛤	 is the labour task content of production, 
measuring the share of labour-performed tasks relative to all tasks (and conversely, the term (1 - 𝛤) 
is the capital task content of production measuring the share of tasks produced by capital). The 
expression for labor task content is hence given by 

𝛤-# =
∫ 𝛾-#6 (𝑧)<@;𝑑𝑧
U
V

∫ 𝛾-#W(𝑧)<@;𝑑𝑧
V
U@; + ∫ 𝛾-#6 (𝑧)<@;𝑑𝑧

U
V
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Where z is the range of all tasks, normalized to vary between N-1 and N. Task I, with N-1 < I < N, 
denotes the threshold task dividing labor-intensive from capital-intensive tasks: for z > I, tasks are 
not automated and are produced only with labor; for z ≤ I, tasks are automated and produced only 
with capital. It follows from the former expression that the labor task content, Γ, shrinks as I increases 
(more tasks previously performed with labor are automated, with a consequent labor displacement), 
and enlarges as N rises (new labor-intensive tasks are introduced, with a consequent labor 
reinstatement). Parameters 𝛾-#6  and 𝛾-#F  identify the labor and capital productivity in producing the 
specific task z. They are task-specific factor productivities differing from the factor-augmenting 
technologies, 𝐴-#6  and 𝐴-#F , that affect factor productivities across all tasks in which labor and capital 
are involved. 

Moving away from the A-R framework, we take account of deviations from perfect competition in 
product markets. At the same time, we retain the assumption that the labor market is perfectly 
competitive or that, if there is bargaining between firms and workers over possible rents, firms are, 
however, able to stay on their labor demand schedules. Given these assumptions, and denoting by 
R the rental rate of capital, the CES structure of the production function leads to the (task-dependent) 
wage share in the i-th sector  

𝑠-	#* = 	 ;
Y12

1

1+1−	𝛤𝑖𝑡	𝛤𝑖𝑡
9
𝐴𝑖𝑡
𝐿

𝑊𝑖𝑡
			𝑅𝑖𝑡
𝐴𝑖𝑡
𝐾H

1−𝜎          (2) 

Where mit ≥1 is the possible markup (when mit > 1) charged by firms of the i-th sector.  

As in canonical models, the wage share depends on the ratio of effective factor prices ^ _`⁄
5 _b⁄  : as 

𝑊 𝐴*⁄ rises relative to 𝑅 𝐴F⁄ , prices of tasks produced by labor rise relative to those produced by 
capital. This causes a substitution between tasks (capital-intensive tasks taking over labor-intensive 
ones) and an impact on the wage share that depends on whether σ < 1 (wage share rises) or > 1 
(wage share reduces). Consideration of imperfect competition in the output market introduces the 
influence of firms’ pricing practices on the wage share: as markups over marginal costs (𝑚-#) rise, 
the wage share diminishes. What is novel in this framework, compared to the standard model, is the 
fact that the wage share depends also on the change of the task content of production: as more 
tasks are allocated to capital (𝛤↓), task content shifts away from labor and the wage share declines; 
conversely the introduction of new (labor-intensive) tasks	(𝛤 ↑) increases the wage share. This is 
quite a different effect from the substitution between tasks, and it takes place independently of 
changes in factor prices and the elasticity of substitution.  

In the A-R framework, automation reduces the wage share unambiguously. This influence can be 
offset by the opposite force represented by the adoption of technologies reinstating new labor-
intensive tasks, provided that such a process occurs at a sufficient pace to compensate the 
automation-induced labor displacement. Besides changing task content, automation can also affect 
the wage share via a substitution effect if it induces factor-biased technological changes that alter 
the relative remuneration of effective inputs. In addition to the wage-share channel, automation 
directly impacts the wage bill through the general productivity improvement (an effect that is 
incorporated in the value-added term of the wage bill identity) and the shift in the economy’s sector 
composition (between sectors characterized by different wage shares). All these effects are 
exhaustively embedded in the model-based decomposition of the wage-bill identity (1).  

Decomposing the change of the real (per-capita) wage-bill 

For the sake of time and space comparability, both the economy-wide value added and the wage bill 
in (1) are normalized by the population, so that changes of these variables are considered in per-
capita terms. Substituting (2) in (1), total differentiation of the wage-bill identity leads to 
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𝐿#𝑑𝑊# +𝑊#𝑑𝐿# = 𝑑(𝑃#𝑌#)e 	𝜒-	#𝑠-	#*
-

+ (𝑃#𝑌#)	e 𝑠-	#* 𝑑𝜒-	#
-

+ (𝑃#𝑌#)e 𝜒-	#𝑑𝑠-	#*
-

 

Using the definitions 𝜒-# =
012312
0232

  and 𝑠-	#* = 512612
012312

	and adopting the further definition 𝑙-# =
512612
5262

 
indicating the wage-bill share generated in the i-th sector, the former expression becomes  

𝑑𝑊#

𝑊#
−
𝑑𝐿#
𝐿#

= 	
𝑑(𝑃#𝑌#)
𝑃#𝑌#

e 𝑙-#
-

+e
𝑠-#6

𝑠#6-
	𝑑𝜒-# +	e 𝑙-#

-

𝑑𝑠-#6

𝑠-#6
 

where	𝑠#	6 is the economy-wide wage share. In terms of natural log-differentiation, the expression for 
the real wage-bill change is written as 

𝑑𝑙𝑛𝑊# + 𝑑𝑙𝑛𝑌# − 𝑑𝑙𝑛𝑃# = 𝑑𝑙𝑛𝑌# + ∑
h12
i

h2i
𝑑𝜒-	# +- ∑ 𝑙-#- 𝑑𝑙𝑛	𝑠-#6          (3) 

where 𝑑𝑙𝑛	𝑠-#6  can be obtained by totally differentiating (2): 

𝑑𝑙𝑛	𝑠-#6 = 	𝑑𝑙𝑛 . ;
Y12
4 + ;@Y12h12

i

(;@	j12)
𝑑𝑙𝑛𝛤-# + (1 − 𝜎)=1 −𝑚-#𝑠-#6 ? k𝑑𝑙𝑛 l

512
_12
i m − 𝑑𝑙𝑛 l

^12
_12
nmo     

Substituting this in (3), we finally get the complete expression of the decomposition of the (per-capita) 
real wage-bill change: 

𝑑𝑙𝑛
𝑊#𝐿#
𝑃#

				= 						𝑑𝑙𝑛𝑌#																																																																																																		(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝑒𝑓𝑓𝑒𝑐𝑡) 										

+e
𝑠-#6

𝑠#6-
	𝑑𝜒-	#																																																																																				(𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑒𝑓𝑓𝑒𝑐𝑡) 				

+e 𝑙-#
-

	𝑑𝑙𝑛 l
1
𝑚-#

m																																																																											(𝑚𝑎𝑟𝑘𝑢𝑝	𝑒𝑓𝑓𝑒𝑐𝑡)

+	e 𝑙-#
-

1 − 𝑚-#𝑠-#6

(1 −	𝛤-#)
𝑑𝑙𝑛𝛤-#																																																															(𝑐ℎ𝑎𝑛𝑔𝑒	𝑖𝑛	𝑡𝑎𝑠𝑘	𝑐𝑜𝑛𝑡𝑒𝑛𝑡)

+e 𝑙-#
-

(1 − 𝜎)=1 −𝑚-#𝑠-#6 ? }𝑑𝑙𝑛 ~
𝑊-#

𝐴-#6
� − 𝑑𝑙𝑛 ~

𝑅-#
𝐴-#W
��										(𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛	𝑒𝑓𝑓𝑒𝑐𝑡) 

Note that in this expression the change in task content identifies labor displacement whenever 𝛤 
moves following an increase of the threshold-task I, while it identifies labor reinstatement whenever 
𝛤 moves following an increase of the upper-limit task N. Moreover, in the expression, the 
composition, markup, change-in-task-content and substitution effects perfectly add up to the log 
change of the economy-wide wage share that enter the wage-bill identity. 

Decomposition of the wage bill: from theory to practice  

The continuous-time model shows how infinitesimal changes of the wage bill can be decomposed 
into changes of the set of completely identified components shown in the right-hand side of the 
former expression. This is an exact (exhaustive) decomposition, in which each effect is identified, 
given the model assumptions. Yet, going from theory to practice approximations are needed for two 
reasons. First, you have to deal with discrete-time variables. Secondly, the variable Γ is empirically 
unobservable, precluding any independent estimation of the term representing the change in task 
content. Both these elements cause the implementation of the decomposition to depart from the 
theoretical model, which has to be properly proxied when performing the empirical exercise. 

Consider the identity of the empirically-measured (per capita) real wage bill at time 𝑡� and 𝑡: 

𝑊#�𝐿#� 𝑃#�⁄ ≡ 𝑌#�e 𝜒-	#�𝑠-	#�
*

-
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𝑊#𝐿# 𝑃#⁄ ≡ 𝑌#e 𝜒-#𝑠-	#*
-

 

Taking the natural-log difference yields: 

𝑙𝑛(𝑊#𝐿# 𝑃#⁄ ) − 𝑙𝑛=𝑊#�𝐿#� 𝑃#�⁄ ? ≡ 𝑙𝑛 𝑌# − 𝑙𝑛𝑌#� + ln=∑ 𝜒-#𝑠-	#*- ? − 𝑙𝑛=∑ 𝜒-	#�𝑠-	#�
*

- ? + 𝑙𝑛=∑ 𝜒-	#�𝑠-	#
*

- ? −
𝑙𝑛=∑ 𝜒-	#�𝑠-	#

*
- ? 

From which an exact decomposition of the change of the (empirically measured) real wage bill 
follows: 

𝑙𝑛(𝑊#𝐿# 𝑃#⁄ ) − 𝑙𝑛=𝑊#�𝐿#� 𝑃#�⁄ ? ≡ 𝑙𝑛 𝑌# − 𝑙𝑛𝑌#�																																									(𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝑒𝑓𝑓𝑒𝑐𝑡) 
																																																															+ 𝑙𝑛=∑ 𝜒-#𝑠-	#*- ? − 𝑙𝑛=∑ 𝜒-	#�𝑠-#	

*
- ?					(𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙	𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑒𝑓𝑓𝑒𝑐𝑡) +

																																																															+𝑙𝑛=∑ 𝜒-	#�𝑠-	#
*

- ? − 	𝑙𝑛=∑ 𝜒-	#�𝑠-	#�
*

- ?	(𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙	𝑤𝑎𝑔𝑒	𝑠ℎ𝑎𝑟𝑒	𝑐ℎ𝑎𝑛𝑔𝑒)		 

A-R show that this discrete-time decomposition of the real wage bill leads to 1st-order Taylor 
approximations of each element of the model-based decomposition (see Appendix 1 for a 
demonstration applied to the markup-augmented version of the A-R model). Moreover, given the 
unobservability of Γ, the term representing the change-in task-content effect can be obtained by 
exploiting the fact that, under the model assumptions, the sector wage-share change exactly 
decomposes into markup, substitution and change-in-task-content effects. Therefore, the latter can 
be derived as a residual, from the identified effects as follows:  

𝑐ℎ𝑎𝑛𝑔𝑒	𝑖𝑛	𝑡𝑎𝑠𝑘	𝑐𝑜𝑛𝑡𝑒𝑛𝑡	𝑖𝑛	𝑡ℎ𝑒	𝑖𝑡ℎ	𝑠𝑒𝑐𝑡𝑜𝑟 = 𝑙𝑛𝑠-#6 − 𝑙𝑛𝑠-#�
6 − ~𝑙𝑛 . ;

Y12
4 − ln	 l ;

Y12�
m� −

=1 −𝑚-#�𝑠-#�
6 ?(1 − 𝜎) l𝑙𝑛 l 512

512�
m − 𝑙𝑛 l ^12^12�

m − 𝑔-#�#
_ m, 

with 𝑔-#�#
_ = 𝑟𝑎𝑡𝑒	𝑜𝑓	𝑔𝑟𝑜𝑤𝑡ℎ	𝑜𝑓	 𝐴-#6 𝐴-#W .⁄   

In theory the change-in-task content effect can be either negative or positive (or null), depending on 
whether the technology-induced labor displacement is larger or smaller than (or equal to) the 
technology-induced labor reinstatement. From this it follows that, to empirically highlight these two 
opposing forces, the change in task content has to be further decomposed in a displacement and 
reinstatement effect. Along with A-R, we do this by assuming that over a sufficiently long period (5 
years) a sector can either adopt automation technologies or introduce new tasks, not both actions at 
the same time. On the grounds of this relatively strict assumption (in fact the 5-year window reduces 
its stringency), it is possible to single out the displacement and reinstatement effects from the 
negative/positive values of the moving average of the change in task content as follows: 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡#@;,# =e ℓ-,#�𝑚𝑖𝑛 �0,
;
�
e ������	-�	#�hF	���#��#1,��O,�

2��

��2��
�

-
 

𝑅𝑒𝑖𝑛𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡#@;,# =e ℓ-,#�𝑚𝑎𝑥 �0,
;
�
e ������	-�	#�hF	���#��#1,��O,�

2��

��2��
�

-
 

Hence, a positive change in task content over a 5-year average is interpreted as a reinstatement of 
labor-intensive tasks, while vice versa a negative one means a displacement of labor in the task 
content of production. 

A summary of the correspondences between each element of the model-based decomposition of 
the wage-bill change and the respective counterparts of the empirical decomposition is reported in 
Table 2.  
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Table 2. Decomposition of the economy-wide real wage bill: correspondence between model-
based and empirical components 

 
Model-based decomposition Empirical counterpart 

Real wage-bill 
change 𝑑𝑙𝑛

𝑊#𝐿#
𝑃#

 𝑙𝑛(𝑊#𝐿# 𝑃#⁄ ) − 𝑙𝑛=𝑊#�𝐿#� 𝑃#�⁄ ? 

-Productivity 
effect 𝑑𝑙𝑛𝑌# 𝑙𝑛 𝑌# − 𝑙𝑛𝑌#� 

-Composition 
effect e

𝑠-#6

𝑠#6-
	𝑑𝜒-	# 𝑙𝑛 le 𝜒-#𝑠-	#*

-
m − 𝑙𝑛 le 𝜒-	#�𝑠-#	

*

-
m 

-Wage share 
change e 𝑙-#

-
𝑑𝑙𝑛	𝑠-#6  𝑙𝑛 le 𝜒-	#�𝑠-	#

*

-
m − 𝑙𝑛 le 𝜒-	#�𝑠-	#�

*

-
m 

---Markup effect 
e 𝑙-#

-
	𝑑𝑙𝑛 l

1
𝑚-#

m e 𝑙-#�-
	}𝑙𝑛 l

1
𝑚-#

m − 𝑙𝑛 ~
1
𝑚-#�

�� 

---Substitution 
effect e 𝑙-#

-
(1 − 𝜎)=1

−𝑚-#𝑠-#6 ? }𝑑𝑙𝑛 ~
𝑊-#

𝐴-#6
�

− 𝑑𝑙𝑛 ~
𝑅-#
𝐴-#W
�� 

e 𝑙-#�-
(1 − 𝜎)=1 −𝑚-#𝑠-#�

6 ? }𝑙𝑛 l
𝑊-#

𝑅-#
m

− ln ~
𝑊-#�
𝑅-#�

� −𝑔-#�#
_ � 

---Change in task 
content e 𝑙-#

-

1 − 𝑚-#𝑠-#6

(1 −	𝛤-#)
𝑑𝑙𝑛𝛤-# 𝑙𝑛 le 𝑙-	#�𝑠-	#

*

-
m − 𝑙𝑛 le 𝑙-	#�𝑠-	#�

*

-
m

−e 𝑙-#�-
	}𝑙𝑛 l

1
𝑚-#

m − 𝑙𝑛 ~
1
𝑚-#�

��

−e 𝑙-#�-
(1 − 𝜎)=1

−𝑚-#𝑠-#�
6 ? }𝑙𝑛 l

𝑊-#

𝑅-#
m

− ln ~
𝑊-#�
𝑅-#�

� −𝑔-#�#
_ � 

----Displacement 
effect 

e 𝑙-#
-

1 − 𝑚-#𝑠-#6

(1 −	𝛤-#)
𝑑𝑙𝑛𝛤-#
𝑑𝐼

 e ℓ-,#�𝑚𝑖𝑛 �0,
;
�e ������	-�	#�hF	���#��#1,��O,�

2��

��2��
�

-
 

----Reinstatement 
effect 

e 𝑙-#
-

1 − 𝑚-#𝑠-#6

(1 −	𝛤-#)
𝑑𝑙𝑛𝛤-#
𝑑𝑁

 e ℓ-,#�𝑚𝑎𝑥 �0,
;
�e ������	-�	#�hF	���#��#1,��O,�

2��

��2��
�

-
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4. Data 

Statistical sources 

We apply the A-R decomposition methodology to the cases of France, Germany, Italy and Spain. 
The main source of data for this analysis is the EU-KLEMS database. This is a comprehensive 
source of harmonized measures providing information on growth, productivity, labor, capital 
formation and technological change at the industry level. To get the widest possible period of time, 
we gather information from the 2009 release (as updated in 2011) covering the period 1970-2007 
and the latest version published in November 2019 covering the period 1995-2017. This way we 
observe a period of 47-years, from 1970 to 2017.  

We consider the market economy, excluding public administration and real estate, as changes in the 
labor (capital) share of these sectors and their influence over the factor shares of the whole economy 
are, by construction, meaningless for economic interpretation (see Torrini, 2005, 2010, 2016)2.  

Given the different classifications adopted in the considered EU-KLEMS releases, the wage-bill 
decomposition has been conducted separately for two sub-periods (1970-1995 and 1995-2017). A 
link between the two sub-period decompositions has been made at the aggregate (market-economy) 
level in the year 1995.3  

Additional statistical sources (OECD, AMECO and IFR databases) have been considered to gather 
the information necessary to implement the empirical testing of the model, and in particular to control 
the different variables (routine jobs, technology, globalization and trade-union density) that may 
influence wage-share and wage-bill changes. A more detailed description of all the datasets and the 
adopted variable transformations is available in Appendix 2. 

Calibrations and approximations 

Not all variables involved in the decomposition model are observable in statistical sources. In 
particular, we do not have information on the elasticity of substitution between labor and capital, the 
factor-bias of technological change and the markup, so that all these variables had to be 
appropriately calibrated and approximated on the grounds of specific assumptions.  

As for the elasticity of substitution between production factors, reference is made to estimates 
available in the empirical literature. Evaluations appear quite heterogeneous across the analyzed 
countries and, also within the same country, across different studies/methodologies/periods (see 
Table 3). However, even with a high degree of variability, such estimates generally point to 
elasticities of substitution lower than 1 for the considered economies, with the partial exception of a 
couple of studies on Spain. All things considered, we choose to adopt an elasticity of substitution 
lower than 1 (𝜎 = 0.8) as a baseline assumption common to all the four countries under examination. 
The adopted value coincides with the average of the elasticities provided by the most recent study 
available on this (Villacorta, 2020).4  

 
2 For the public sector, profit is null by definition because (gross) value added in public administration is given 
by wage bill plus depreciation on fixed assets. This implies that the share of capital in the whole economy will 
reduce, compared to that of labor, in the occurrence of an increase in supply of public services. As for real 
estate, the industry value added is directly imputed to the housing stock and labour does not really have a role 
as a production factor in it. Moreover, prices of real estate services strongly depend on investment choices 
and therefore can be quite far from the equilibrium ones. Based on these prices, it is usual to assess the 
imputed rents, which are accounted as part of household income even if no effective transaction takes place 
and which also contribute to defining the value added of the real estate sector. 
3 It follows from this procedure that the economy-wide wage-bill decomposition over the whole period 1970-
2017 underlies a change in sector composition in 1995. 
4 It corresponds to the value adopted by A-R for the US as well. 
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With regard to the bias of technological change, that is, the rate of growth 𝑔-#�#
_ = 𝐴-#6 𝐴-#W⁄ ,	we assume 

along with A-R that all technological progress is labor augmenting, and so approximate 𝑔-#�#
_ with the 

observed average rate of growth of (hourly) labor productivity in each sector over the relevant period. 
Note that considering all technological progress as labor augmenting leads to shrinking the relative 
price of effective labor, compared to other possible assumptions on technological bias. Since 𝜎 < 1, 
from this hypothesis follow both a possible overestimation of the role of the substitution effect in 
reducing the wage-share and, given the construction of the change in task content as a residual, a 
correspondent underestimation of the influence of technology in displacing the labor-intensive tasks 
contained in production processes. Hence, such an assumption on the labor-augmenting technical 
progress ends up representing a lower bound for the estimation of the change-in-task-content effect.  

For the markup, following the literature (e.g. De Loecker, Eeckout, 2017), when measured as the 
ratio between output price and marginal costs (c), this variable can be expressed for the i-th sector 
as 

𝑚-# =
𝑃-#
𝑐-#

=
ℎ-#
𝑉-#
		 

Where ℎ-# =output elasticity to variable inputs; 𝑉-#= share of variable inputs in gross output, so that 
;
�12

=𝐺𝑟𝑜𝑠𝑠	𝑂𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒	𝑖𝑛𝑝𝑢𝑡𝑠⁄ .5 

While sector-level shares of variable factors in output,	𝑉-#,	are observable and directly computable 
from available statistics, sector-level output elasticities, ℎ-#, are not and have to be estimated. Yet 
both methodological issues and data constraints related to cross-country harmonization and 
comparability make such an estimation an awkward exercise (on this see Battiati et al. 2020). This 
problem can be partly dealt with in the dynamic setting that characterizes the decomposition 
exercise, assuming that the bulk of the markup change mainly reflects changes of the shares of 

 
5 The markup expression follows from the firm’s cost minimization, allowing for both constant and increasing 
returns to scale. 

Author/study France Germany Italy Spain

Villacorta (2020) 0.83 0.88 0.63 1.13

Muck (2017)

Estimate A 0.319 - 0.371 0.400 - 0.834 0.360 - 1.539 0.423 -1.276

Estimate B 0.317 - 0.671 0.360 - 0.399 0.756 - 0.971 0.722 - 0.998

Baccianti (2013) - - 0.74 -

Saltari and Federici (2013) - - 0.66 -

McAdam and Willman (2004) - 0.70 - 1.20 - -

Bolt and Van Els (2000) 0.73 0.53 0.52 1.00

Rowthorn (1999)

Estimate A 0.06 - 0.14 0.18 - 0.48 0.07 - 0.08 0.31

Estimate B 0.11 - 0.24 0.33 - 0.87 0.12 - 0.15 0.55

Koschel (1999) - 0.436 - 1.22 - -

Kemfert and Welsch (1998) - 0.579 - 0.871 - -

Table 3. Overview of the estimates on elasticity of substituion σ available in the literature
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variable-inputs share, with the output-elasticity change playing a minor role. It is mainly an empirical 
issue to verify how strong this assumption is. De Loecker and Eeckout (2017), assessing the relative 
importance of the markup components, find that during the period of a strong markup rise in the US, 
output elasticities to variable inputs indeed changed very little, while the change of the income share 
of variable inputs share explained almost the whole increase. It also has to be pointed out that 
national accounts statistics implicitly make this assumption when estimating aggregate and sector 
markup indexes (with respect to a base year) as a ratio between output price and average variable 
costs indexes. All in all, we choose to follow this approximation for the markup in the empirical 
application of the A-R (markup-adjusted) model to the European economies. Given national 
accounts information (provided by EU-KLEMS) on labor compensation and the value of intermediate 
inputs (the sum of which represents variable costs), the sector-level markup change in the 
decomposition exercise is computed as:    

𝛥𝑙𝑛	𝑚𝑎𝑟𝑘𝑢𝑝 = 	𝛥𝑙𝑛	[	𝐺𝑟𝑜𝑠𝑠	𝑂𝑢𝑡𝑝𝑢𝑡 (𝐿𝑎𝑏𝑜𝑟	𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 + 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒	𝐼𝑛𝑝𝑢𝑡𝑠)]⁄  

 

5. Decomposition results 

We apply the decomposition model illustrated in Section 3 to the wage bill of France, Germany, Italy 
and Spain over the period 1970-2017. For the period 1970-1995, we have data for 30 sector 
categories for the market economy classified according to the NACE1 classification; for the period 
1995-2017 we have 34 sector categories according to the NACE2 revision. We conduct the 
decomposition separately for the two subperiods and then merge the aggregate results (which are 
in terms of log changes) in 1995 to get a complete view over the whole 47-year period. Hence, there 
are some underlying sector discontinuities behind the aggregate behaviors due to the break in 1995. 
We present the main results by steps.  

The first step concerns the decomposition of the wage-bill change (in real terms and normalized by 
the population) into the productivity effect (per-capita real value added) and the economy-wide wage-
share effect (gross of sector-composition shifts), that is  

Wage-bill change = productivity effect + (economy wide) wage-share effect 

This is shown in Graphs 1-4. As expected, the real (per-capita) wage bill is fundamentally driven by 
productivity developments. Misalignments between the two variables reflect wage share changes. 
The wage bill has decelerated in Germany, Italy and Spain since the early 1990s. It even declines 
in the latter two countries over the crisis period (2007-2013). France appears as an exception in this 
picture, with no appreciable slowdown. As for the wage bill components, Germany starts with an 
underperforming productivity growth and, correspondingly, a shrinking wage share in the early 
2000s, that is, since the beginning of the monetary union. The Italian wage bill grows less than 
productivity, giving place to a falling wage share mainly between the early 1990s and the early 2000s. 
After the countercyclical rebound during the recession years (2008-2013), the wage share begins to 
weaken again. In France, as well as in Spain, the wage-share deterioration starts sooner than in the 
other two countries, being already detectable in the 1980s. Spain sees an intensification of the wage-
bill squeeze in the post-recession years (2014-2017). 
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Graphs 1-4. Wage bill decomposition into productivity and wage share effects (log changes over 
1970) 

   
Own elaboration on EU KLEMS data 

   
Own elaboration on EU KLEMS data 

 

Wage-share changes are influenced by a variety of factors, with most of them considered in the A-
R decomposition framework. In so far as labor market reforms affect the dynamics of wages relative 
to the rental price of capital, this is captured by the substitution effect. The latter is also influenced 
by technical change, if this is biased towards some specific production input. Deregulations and 
globalization may affect the degree of competition in product markets, and as such they produce 
markup shifts (Becker et al., 2013). Structural changes in the economic system (like tertiarization, 
aging, shifts in factors allocation) translate in change in sector composition. Moreover, as shown in 
the A-R framework, the opposing forces of automation and introduction of new labor-intensive tasks 
affect the wage share, inducing changes in the input-content of production tasks. These factors may 
be differently relevant in the considered countries in different periods. Labor-market reforms were 
realized in Germany notably after the fall of communism in order to respond to the rising competition 
from Eastern European countries (Dutsmann et al. 2014). The resulting wage moderation contributed 
to the wage share compression that materialized after the inception of the monetary union (De Nardis 
2018). Similarly, wage moderation following labor-market reforms played a role in reducing the Italian 
wage share in the early 1990s. A trend that was reinforced by the privatization processes of relevant 
non-manufacturing sectors (Torrini 2005 and 2010). A markup squeeze because of the loss of 
competitiveness of the traded sectors facing growing international competition could have then 
contributed to the partial resumption of the wage share experimented in Italy in the years around 
2005 (Torrini 2016). Wage moderation policies were put forward in France in the middle 1980s, after 
the wage shocks of the 1960s and early 1970s (Estevao and Nargis 2002). In Spain, profound 
institutional shifts from the end of the 1970s to 1986, when it became a member of the EU, 
substantially affected both the economic structure and the behavior of firms and workers. In general, 
sector composition changes and biased technological progress towards skilled workers (highly 
substitutive to unskilled ones) were common forces affecting the wage share dynamics in the 
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considered countries (Arpaia et al. 2009). Automation-induced task changes were quite pervasive in 
European countries in the most recent decades (see Chiacchio et al. 2018 and the other studies 
surveyed in section 2).  

All these factors enter the next step of the decomposition exercise, where the (economy-wide) wage 
share change is broken down as  

Wage-share change = composition effect + markup effect+ substitution effect + change-in-task-content effect 

This decomposition is shown in Graphs 5-8. There are heterogeneities, but also common elements 
across the considered countries. First, along with the expectations coming from the A-R model, it 
can be noted that the deceleration of the substitution effect plays a relatively limited role in affecting 
the wage share. This occurs on the grounds of assumptions (labor augmenting technical change 
and substitution elasticity lower than 1) that tend to emphasize the role of wage moderation and 
technological progress in wage-share weakening. Another common element (with the exception of 
Spain) is the negative influence of sector composition on the wage share. Such an effect points to a 
change in composition of the market economy towards sectors characterized by lower wage shares. 
This is more pronounced in Germany, which is characterized by an increasing weight of productions 
that are capital intensive. In Italy a relative accentuation of this phenomenon can be observed in the 
first decade after 2000.  

The markup effect exerts a different influence in Germany and Italy, on one hand, and France and 
Spain on the other. In the former two countries, markup compression has a tendency to sustain the 
wage share. In Italy this stops between the mid-1990s and the early 2000s (when privatization 
processes took place) to resume appreciably around 2005. Quite an opposite trend characterizes 
both France and Spain, with rising markups since the 1980s that explain a relevant fraction of the 
fall in wage share starting in that period. 

Former effects do not exhaust all the possible factors affecting the wage share and, consequently, 
the wage bill. In the production-task-content framework, the unexplained portion of the wage share 
change is related to variations in the content of labor-intensive tasks of production processes. As 
Graphs 5-8 show, despite the differences of nationally specific stories, a common feature shared by 
the considered countries is the deterioration of the change-in-task-content component in the last 25-
30 years. In Germany and Italy, the influence of such a component becomes relevant in the 1990s, 
after playing a marginal role in the former period. In Germany, the fall in labor-intensive task content 
materializes around 1995 and becomes determinant in the 2000s when, in addition to a constant 
negative composition effect, it leads to the wage-share compression observed in this period. In Italy, 
the change-in-task content effect contributes to the reduction of the wage share and thus to the 
lowering of the wage-bill dynamics below productivity between the early 1990s and the early 2000s 
and again in the most recent period (after 2013). A negative influence of the change in task content 
can already be detected in the 1980s in France and Spain; however, also in these countries the 
effect sensibly intensifies in the early 1990s, becoming the main driving factor of the wage-share 
change.   
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Graph 5-8. Wage share decomposition into composition, markup, substitution and change in task 
content effects (log changes over 1970) 

  

           
Own elaboration on EU KLEMS data 

 

The last step of the decomposition concerns the breaking down of the change in task content into 
the labor displacement and reinstatement effects, as given by 

 

Change in task content = reinstatement effect – displacement effect 

 

This is shown in Graphs 10-14. As can be seen, the deterioration of the labor-intensive task content 
of production since the 1990s reflects an acceleration of the labor displacement effect in all the 
considered countries. There is also some intensification of the labor reinstatement effect (with the 
partial exception of France), but the introduction of new labor-intensive tasks is insufficient to offset 
the strengthening of the displacement effect experienced in this period. 
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Graph 10-14. Decomposition of change in task content into displacement and reinstatement 
effects 

 (log changes over 1970) 

  

   
Own elaboration on EU KLEMS data 

Given the different roles played by labor displacement and reinstatement in the examined countries, 
it is interesting to go deeper in the detection of the activities related to both these phenomena. This 
is shown in Graphs 15-19, where reinstatement and displacement effects are broken down into the 
contribution of a number of sectors, namely manufacturing, high-tech services, low-tech services 
and the rest.6 In Italy, the intensification of displacement since the 1990s has mainly been driven by 
the reinforcement of this phenomenon in the low-tech services. These same sectors have 
contributed, beside the positive role exerted by manufacturing, to the rise of labor reinstatement 
since the early 2000s. A noticeable contribution to displacement coming from low-tech services is 
also observable in Germany and France. In Spain, these sectors also contribute to the reinstatement 
phenomena, analogously to the Italian experience. However, both in Germany and in Spain 
manufacturing is a more relevant contributor to both labor displacement and reinstatement, with the 
former effect prevailing over the latter. On the contrary, concerning Italian manufacturing, it is 
reinstatement that is larger than displacement. In France the stronger components in displacement 
are the residual sectors, as well as a relevant role played by the low-tech services. 

 

 
6 The grey bars in Graphs 15-19 show an aggregate obtained as a residual sum of all these remaining sectors 
(i.e. agriculture, mining, energy sector, waste management and constructions). 
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Graphs 15-19. Sectoral contributions to displacement and reinstatement, 1990-2017  

 .

  
Own elaboration on EU KLEMS data 

 

 

 

To sum up the evidence of this section, despite national heterogeneities common elements arise 
from the wage-bill decomposition of the European countries. The deceleration of wage-bill growth in 
the last 30 years registered in Germany, Italy and Spain appears to be related to both productivity 
slowdown and adverse shifts in the task content of production, where the latter is connected to 
automation-induced labor displacement not adequately offset by the creation of new labor-intensive 
tasks. Even if no appreciable wage-bill deceleration is detectable in France, a similar deterioration 
of labor-intensive task content appears to take place there. Relevant contributions to displacement 
come from low-tech services in all countries. In Italy and Spain these sectors also contribute to 
reinstating new labor-intensive tasks. Manufacturing mainly exerts a reinstating effect in Italy, while 
displacement prevails over reinstatement in Germany and Spain. Residual sectors (including 
agriculture activities) have an important role in the French displacement experience. 

It may be finally interesting to compare the obtained results with the US evidence reported by A-R. 
This comparison highlights a relatively less severe deterioration of the change in task content in the 
considered EU countries since the early 1990s. This partly depends on a less marked acceleration 
of labor displacement effects compared to the US. At the same time, the (although insufficient) 
strengthening of labor reinstatement observed in the analyzed European economies is absent in the 
US, where instead a slowdown of labor reinstatement pairs with the intensification of the 
displacement effect. Finally, the relevant role of displacement in the non-manufacturing sectors 
(particularly, in the low-tech services) characterizing the European countries is not matched by the 
US experience, where displacement appears mainly as a manufacturing phenomenon. 
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6. Displacement and technological change 

In order to further investigate the decomposition results, we apply an econometric model to analyze 
the influence of a variety of factors, beside technology, which can affect the displacement effect, that 
is, the negative component of the change in task content of production. We consider three domains 
of interaction. We include first of all predictors for automation and technological change. We then 
consider the possible influence of globalization and international production networks. To these we 
finally add an explicit consideration of the labor-market institutional context; this is an indirect check 
of the A-R assumption, retained in our application, about firms’ ability to stay on their labor demand 
schedule in a way that wage share is unaffected by possible rent bargaining. 

Based on data availability, and matching the decomposition results in terms of sectoral detail and 
time period, we make use of different sources of information and model specification followed 
accordingly. Automation (AT) is alternatively measured by either the share of routine jobs at risk of 
automation (source OECD, Marcolin et al., 2016, 2019) or the operational stock of robots per industry 
(source IFR, 2020). Technological change is proxied by the variation in capital investments in ICT 
hardware (HK) and software (SK; the source for both kinds of investments is EU KLEMS). As for 
internationalization, the share of imported intermediate goods (IG) per each sector (source: OECD) 
is used to account for the influence of offshoring on production; and the weight of imports from China 
on domestic output (CC) is taken to factor in the Chinese competition per each industry (source: 
OECD). As for labor-market institution, unionization is included in terms of trade-union membership 
(TU) among all workers (source: OECD). Finally, we highlight the specificities emerged from the 
decomposition results in terms of differing sectoral contributions to the displacement and effects 
varying across the analyzed countries. We do this by means of two dummy variables: the first (Man), 
counting 1 per each manufacturing sector and null for the remaining; the second (Spa), taking value 
1 for Spain only, in order to take account of the repercussions of the institutional changes that took 
place in this specific country.  

A simple regression model was specified using the displacement effect as a dependent variable, and 
adding the mentioned predictors in subsequent stages. The empirical model in the complete form is:  

𝐷𝑖𝑠𝑝𝑙¥,- = 𝛽;∆𝑙𝑛	𝐴𝑇¥,-+𝛽©∆𝑙𝑛	𝐻𝐾¥,- + 𝛽«∆𝑙𝑛	𝑆𝐾¥,- + 𝛽­∆𝑙𝑛	𝐼𝐺¥,- + 𝛽�∆𝑙𝑛	𝐶𝐶¥,- + 𝛽¯∆𝑙𝑛	𝑇𝑈¥,- + 𝑀𝑎𝑛 + 𝑆𝑝𝑎 + 𝜀¥,- 

where 𝑗 = countries and 𝑖 = sectors.  

This is a cross-section equation where the left-hand variable (displacement effect) is the log change 
over the considered period. It is negative (as displacement enlarges it becomes more negative), so 
that the expected association with technology variables is also negative. Given that decomposition 
effects express delta logs on base year of the analyzed period (1995), the specification for the four 
countries in 2015 was chosen.7 Table 4 summarizes the obtained results, where the share of routine 
jobs at risk of automation was used as a main proxy for this kind of technological change.  

As we can see, the directionality of the relation between automation and displacement is always 
negative, and the coefficients acquire statistical significance when additional factors influencing 
change in tasks are included in the model. Particularly, this evidence points out that the displacement 
effect of technology cannot be reduced only to automation-exposed routine jobs. Equally relevant is 
the (negative) influence of the software component of technological capital (while the impact of the 
ICT hardware component is much less clear cut). Actually, this could be related to the displacement 

 
7 The sector-homogeneity constraint dictates the initial year (NACE 2 classification starts in 1995). The reason 
behind the choice of 2015 as the final year, instead of 2017, lies in the lack, by construction, of displacement 
values for 2016 and 2017. The estimation procedure of this effect, by means of a 5-year moving average, 
implies missing data for the first and the last two years of the time interval. 
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phenomena that took place in the service sector of the considered economies. As for the 
globalization domain, this analysis suggests that the international fragmentation of production 
chains, rather than the sole increase in foreign trade and competition, has an impact on 
displacement. However, the positive sign points to an overall competition-induced favorable effect 
that as such does not concur with technology in enlarging the displacement of labor-intensive tasks. 
Unionization does not appear to affect displacement significantly, although the introduction of this 
variable improves the statistical significance of the routine jobs coefficient. We interpret this evidence 
as an indirect confirmation of the assumption about the irrelevant influence of rent bargaining on 
wage share. Lastly, both considered dummy variables appear relevant for the specification and 
increase the overall explanatory power of the model. We interpret this latter finding as an indication 
that, contrary to the US case (see Acemoglu and Restrepo 2019), technology-induced displacement 
was not really a manufacturing phenomenon in the examined European countries considered as a 
whole (positive sign of the manufacturing dummy) and that, at the same time, relevant country-
specific institutional changes had a significant impact on displacement (negative sign of the Spain 
dummy).   

 

 

Based on these results, the assumptions made about the significant impact that technological 
innovation (in terms of both automation and investment in software capital) has had on labor 
displacement seem confirmed. In order to delve deeper into this, a further stage of the econometric 
analysis envisioned the use of data on the adoption of robots per industry as the main proxy of 
automation (i.e. as an alternative variable for the AT term in the regression specification equation). 
Table 5 below shows the results obtained from this model replication. 

Table 4. Factors affecting displacement: results of regression model in the routine jobs  specification

Measures of automation (1) (2) (3) (4) (5) (6)

-0.3899 -0.3303 -0.4049 -0.4009 * -0.6354 ** -0.5516 *
Std. Errors 0.3052 0.2373 0.2344 0.2302 0.2961 0.2789

K in Hardare components -0.0092 -0.0567 ** -0.0716 * -0.0419 0.0262
0.0271 0.0228 0.0392 0.0495 0.0459

K in Software components -0.0501 -0.1591 *** -0.1553 *** -0.1480 *** -0.1450 ***
0.0575 0.0490 0.0484 0.0389 0.0378

Measures of internationalization

Offshoring of intermediates 0.0377 0.0442 0.0599 ** 0.0790 ***
0.0245 0.0258 0.0253 0.0308

Chinese import competititon 0.0251 0.0252 0.0151 0.0112
0.0179 0.0188 0.0173 0.0185

Trade unions' density 0.0905 0.0461 0.0034
0.1583 0.1609 0.1046

Manufacturing 0.0990 0.1473 **
0.0622 0.0688

Country dummy -0.1994 ***
0.0661

Constant term -0.0821 -0.0415 0.0328 0.0526 0.0530 0.0037
0.0820 0.1094 0.1339 0.1430 0.1229 0.1253

N° observations 63 50 41 41 41 41
R2 0.06 0.06 0.34 0.35 0.40 0.53

Share of routine jobs at risk of automation

*** p < 0.01; ** p < 0.05; * p < 0.1     Robust standard errors to control for heteroskedasticity, clustered by industry.
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Although the directionality of the effects seems confirmed, thus proving an inverse relation between 
automation and the task changes, in this case the coefficients fail to prove statistical significance 
and this specification of the AT variable cannot be considered sufficiently informative. Some 
considerations can still be made though. As happened with the previous estimate, the addition of 
internationalization predictors yields statistical significance to automation measures. While in Table 
4 also the main proxy acquired relevance, here only the investments in software become highly 
significant, confirming the association that this kind of technological change has with displacement 
effects. As said before, this evidence seems to confirm that higher changes in task content of 
production came from the service sectors.  

 

Also, some considerations must be borne in mind about the kind of performed task and the way 
automation makes an impact on the task variations. Although the International Federation of 
Robotics compiles its database on the penetration of industrial robots either by industry or by 
application, a combination of these two characteristics is not available. Despite the relevance of a 
sectoral analysis, it would certainly be useful to know also how robot application impacts the job 
tasks and better disentangle the intertwined relationship between the two, especially within a task-
based framework as the one adopted in this study. A new robot application could indeed be either 
complementary (like “cobots”, collaborative robots) or replace the human labor task it concerns. 
Moreover, the World Robotics dataset includes “multipurpose” robots only (Müller and Kutzbach, 
2020), and so by definition excludes some specifically dedicated machines (e.g. equipment 
dedicated to loading/unloading of machine tools). More importantly, with the IFR dataset focused on 
industrial robots, and so not explicitly accounting for the service ones8 (Müller et al., 2020), it risks 

 
8 For further details on the sectoral coverage of the robot dataset, see Appendix 2. 

Table 5. Factors affecting displacement: results of regression model in the robot  specification

Measures of automation (1) (2) (3) (4) (5) (6)

-0.0054 -0.0046 -0.0063 -0.0066 0.0024 -0.0077
Std. Errors 0.0078 0.0060 0.0085 0.0091 0.0120 0.0124

K in Hardare components 0.0011 -0.0035 -0.0018 0.0025 0.0630
0.0189 0.0273 0.0428 0.0448 0.0486

K in Software components -0.0315 -0.0578 *** -0.0584 -0.0384 -0.0340
0.0274 0.0303 0.0341 0.0294 0.0320

Measures of internationalization

Offshoring of intermediates 0.0322 0.0320 0.0436 0.0597
0.0243 0.0248 0.0304 0.0349

Chinese import competititon 0.0135 0.0134 0.0064 0.0050
0.0178 0.0181 0.0212 0.0198

Trade unions' density -0.0115 0.0473 -0.0177
0.1511 0.1251 0.1385

Manufacturing 0.0824 0.0790
0.0859 0.0817

Country dummy -0.1927 **
0.0829

Constant term -0.1974 *** -0.1454 *** -0.1520 *** -0.1534 ** -0.2232 *** -0.1937 **
0.0223 0.0324 0.0540 0.0595 0.1025 0.0858

N° observations 81 64 51 51 51 51
R2 0.01 0.03 0.11 0.11 0.13 0.25

Robots, operational stock

*** p < 0.01; ** p < 0.05; * p < 0.1     Robust standard errors to control for heteroskedasticity, clustered by industry.
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embedding a bias towards manufacturing, which among our considered sectors is the most likely to 
employ multipurpose industrial robots. Bearing in mind also what is shown by Graphs 15-19 about 
the sectoral disentangling of contributions to the task changes, it follows that the weak statistical 
significance of the relationship between the automation measured by the robot proxy and the 
displacement effect could be a result of an insufficient informative power of the chosen predictor 
itself. As a matter of fact, if the low-tech services were the more prominent contributors to changes 
in the four countries we considered, it could be difficult to grasp the magnitude of the displacement 
they engendered, making use of a variable that does not take them into account. 

Furthermore, under the results presented in this chapter, a highly and persistently significant and 
negative relation between displacement and capital investments may suggest that such automation 
was more likely to be replacing in the case of software than hardware. This indeed seems supportive 
of the considerations expressed about the robot predictor as well, to the extent that software 
investments are more relevant in services than in other sectors.   

In order to further expand on this subject, an additional specification of the model was tested, 
excluding all non-manufacturing sectors ex-ante (see Appendix 3). Besides the continuously 
significant negative influence of the software variable, investment in hardware components becomes 
relevant in this specification. Also, they both do so irrespectively of internationalization predictors 
this time. As regards robots, the results provided by this estimation are still insufficient to draw 
accurate conclusions, but they suggest that this relationship is less adverse than one could expect, 
and even less when looking at manufacturing alone. Moreover, international competition sounds 
more relevant for these industries than it appeared for the whole market economy. Finally, another 
validation comes from the latter specification, that is, the relevance of the country dummy, 
highlighting the institutional difference between the analyzed EU Member States and their labor 
markets. 

 

7. Conclusions  

This study has aimed to analyze the influence that technological changes have had on aggregate 
dynamics of the wage bill, the wage share and their components by focusing on the four main EU 
countries (France, Germany, Italy and Spain) over almost a 50-year period (1970-2017). In order to 
do so, we drew upon the decomposition framework elaborated by Acemoglu and Restrepo for the 
US case (2019). As showed, the empirical exercise applied to the market economy indicates that 
the wage-bill deceleration observed in these countries in the last decades was mainly productivity 
driven. Yet the emergence or intensification of a compression of the wage share induced the wage 
bill dynamics to fall short of the productivity deceleration for more or less prolonged periods. The 
reduction of labor-intensive tasks intensifying since the 1990s, concurrently with the latest wave of 
technological innovations, contributed appreciably to the compression of the labor share. Anyway, 
these negative effects look less pronounced when compared to those highlighted by A-R for the US.  

A diminishing labor-intensive task content generally reflected a surge in labor displacement effects 
not sufficiently compensated by labor reinstatements through the creation of new tasks. A sectoral 
breakdown of these two opposing forces shows both common and country-specific features. 
Relevant contributions to displacement came from low-end service sectors in all countries. In Italy 
and Spain these sectors also contributed to reinstating new labor-intensive tasks. On the whole, this 
evidence allows us to underline that not only the intensity of the technology-induced displacement 
effects, but also the sectors where the compensating labor-reinstatement forces take place, is what 
actually matters for the labor share and wage-bill dynamics. Therefore, the net effect of the changes 
occurred in the task content of production differs from case to case. The magnitude of either these 
possible effects, or their combination, very much depends on the nature of the job-tasks to be carried 
out by workers and the kind of (displacing and reinstating) technologies being introduced. These 
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elements are clearly relevant in determining the intensity of the productivity push induced by 
technological change. 

Displacement was further investigated to allow for the possibility of this effect being correlated with 
additional influencing factors other than technology. The considered dimensions of analysis 
included: automatable employment shares and use of robots; other technology inputs such as capital 
investments in ICT hardware and software; globalization and shares of imported intermediate goods; 
and trade unions’ membership. Empirical evidence provided by econometric modeling confirmed the 
negative correlation between displacement and technological innovations (particularly in the form of 
investment in software) and the related risks of automation for concerned human labor. Less 
indicative appeared the influence of industrial robots, probably due to the characteristics of the 
available statistics that are likely to underestimate automation in the service sector. The other 
considered domains (internationalization and intensity of trade-union membership) do not seem to 
influence this relationship’s contribution to the enlargement of the displacement effect. 
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Appendix  

 

1. Wage bill decomposition 

Here we show that the empirical decomposition of the wage bill approximates the theoretical model 
giving rise to the correspondences of Table 2 in the text.  

Correspondence is straightforward for the productivity effect for which theory has a precise empirical 
counterpart, so we have:  

	𝑙𝑛 𝑌# − 𝑙𝑛𝑌#� = 𝑑𝑙𝑛𝑌# 

Regarding the composition effect and the wage-share change, the empirical terms can be 
considered as approximations of the theoretical ones, since, as shown by A-R, the 1st order Taylor 
expansion of 𝑙𝑛=∑ 𝜒-#𝑠-	#*- ? around 𝑙𝑛=∑ 𝜒-	#�𝑠-	#

*
- ? leads, for the composition effect, to:  

𝑙𝑛 le 𝜒-#𝑠-	#*
-

m − 𝑙𝑛 le 𝜒-	#�𝑠-#	
*

-
m ≈e

𝑠-#6

𝑠#6-
	𝑑𝜒-	#		 

and the 1st order Taylor expansion of 𝑙𝑛=∑ 𝜒-	#�𝑠-#	
*

- ?	around 𝑙𝑛=∑ 𝜒-	#�𝑠-	#�
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- ? leads, for the wage-share 
change, to: 
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-
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*

-
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-
𝑑𝑙𝑛	𝑠-#6  

To get the unspecified empirical counterparts of the components of the wage-share change (that is 
the markup effect, the substitution effect and the task-content change) in the i-th sector, equation (2) 
in the text is rewritten as: 

𝑠-	#* = 	 ;
Y12

 
;

;µO�	¶12	¶12
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   where 𝜌-# =
512
_12
i
_12
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^12
  and hence 𝑠-	#* = 𝑠6(𝑚-#, 𝜌-#, 𝛤-#) 

To get the components of 𝑑𝑙𝑛	𝑠-#6  apply the 1st order Taylor expansion of 𝑙𝑛𝑠6(𝑚-#, 𝜌-#, 𝛤-#)	around 
𝑙𝑛𝑠6=𝑚-#�, 𝜌-#�, 𝛤-#�?, this approximately yields: 
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Hence the parameter multiplying =𝑙𝑛𝑚-# − 𝑙𝑛𝑚-#�? is -1, which means that the parameter multiplying 

lln	( ;
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) − ln	( ;

Y12�
)m is 1 as in the theoretical model. 

As for the relative factor-price change, identified by the ρ term, in the i-th sector we have:  
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It follows that the parameter multiplying =𝑙𝑛𝜌-# − 𝑙𝑛𝜌-#�?  is  =1 −𝑚-#�𝑠-#�
6 ?(1 − 𝜎) which coincides with 

the parameter of the substitution effect of the theoretical model. 

 

Regarding the change in task content in the i-th sector we have: 
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Hence the parameter multiplying =𝑙𝑛𝛤-# − 𝑙𝑛	𝛤-#�?	 is 
;@Y12�h12�

i

;@j12�
 coinciding with the one of the change-

in-task-content of the theoretical model.  

 

2. Data treatment for decomposition exercise 
 

As mentioned in the text, the main statistical source for this work was the EU KLEMS. Although many 
variables were taken as such from the original database, some estimates were needed - for example, 
in the case of the variable CAP, capital compensation, when its values were lower than zero. With 
this occurrence being possible because the original variable is obtained as a residual of VA (value 
added) minus LAB (labor compensation), it created a distortion in our analysis when used to 
calculate delta logs on negative values in base year. While in the EU KLEMS methodology literature 
(Timmer et al., 2007) a suggested solution for this is to replace negative values with zeros, we could 
not apply it to solve our specific problem and we chose to intervene directly on the signs of the 
estimated effect, which starting with negative values produced delta logs of a counterintuitive 
directionality. 
 

 
 

Variable Source n° obs. Mean Std. Dev. Min Max

Value Added EU KLEMS (va) 3,128 30241 34972 -751 319354

Labor compensation EU KLEMS (lab) 3,128 21491 26411 -403 241751

Capital compensation EU KLEMS (cap) 3,128 8750 10649 -7568 98733

Labor services EU KLEMS (lab_qi) 3,128 101.4 19.5 13.6 275.5

Capital services EU KLEMS (cap_qi) 3,128 95.3 21.0 27.4 369.9

Gross output EU KLEMS (go) 3,220 137471 423585 1518 4708708

Intermediate inputs EU KLEMS (ii) 3,220 78718 242172 297 2609507

Price index for labor own elaboration on EU KLEMS 3,128 218.2 268.6 -5.0 2101.2

Price index for capital own elaboration on EU KLEMS 3,128 95.0 122.4 -74.9 1545.1

Labor productivity own elaboration on EU KLEMS 3,128 0.16 0.30 -1.62 1.92

Sigma own elaboration on literature 3,128 0.87 0.18 0.63 1.13

Table A1. Descriptive statistics of variables used in the decomposition exercise
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In the case of missing data, they have been estimated by referring to the closer variable available 
(as in the case of LAB_QI, labor services, which were computed based on the distribution of H_EMP, 
n° of hours worked by employed persons per sector). When no directly related variable was available 
as basis for the estimate (as in the case of CAP_QI, capital services), we assumed that sub-sector 
values could be proxied by main reference sectors.  

 
3. Econometric model: variables and validation 

 
The indicator used to quantify the share of routine jobs at risk of automation was estimated by 
combining two OECD references (Marcolin et al., 2016 e 2019) on this issue. Matching the national 
and sectoral information provided by the two, we obtained a national indicator with an industry level 
detail referred to the early 2010s. In particular, sectoral shares of jobs at (both medium and high) 
risk of automation available for the whole total of OECD members were reallocated to the four 
analyzed countries based on the percentage incidence that routine jobs have per each of the 
considered countries with respect to the OECD total. In the econometric estimate we consider the 
level of this variable. In doing so, we assume a substantial stability of the share of automation-
exposed routine jobs in each sector/country over the considered period.  
 
The variables on investments in hardware and software were obtained from the information on 
capital stock net available in the EU KLEMS Capital Accounts. We selected the computing and 
communications equipment together, along with the computer software and databases statistics, 
and calculated their variations over the period analyzed by the model. We take the log variations of 
these variables over the period 1995-2015. 
 
Data on penetration of robots were instead taken from the World Robotics 2020 database, compiled 
by the International Federation of Robotics, referring to the operational stock measure per industry. 
Given the use of ISIC rev.4 to classify the sectoral distribution of robots in this dataset, a conversion 
to our NACE rev.2 was needed before use. Considering also the lack of information on services, we 
followed the strategy (common to previous similar studies, e.g. Acemoglu and Restrepo, 2017) of 
reallocating the “unspecified” codes to missing industries. In particular, in order to approximate the 
underlying sectoral distribution useful as a reference parameter, we used the volumes of gross fixed 
capital formation per other machinery and equipment (Iq_Omach) available in the EU KLEMS Capital 
accounts. We reassigned the 90 code “All other non-manufacturing branches” among service sectors 
first, and the 99 code “Unspecified” across all sectors next. This way we were able to obtain a full 
matrix to match our estimates dataset. Finally, we considered the obtained values of robot units per 
industry as delta logs over the period 1995-2015. 
 
As for internationalization, the OECD “Input-Output Intermediate Import Ratio” indicator was used to 
take into account the weight of imported intermediate goods into domestic production. With it being 
available for three periods (mid 1990s, early 2000s, and mid 2000s) we used the delta log between 
the third and the first one to cover the time interval considered by the model. The log variations in 
sectoral imports from China (expressed as share of the domestic gross output) were instead used 
to approximate foreign trade competition.  
 
To take into account the institutional context, data were taken from the OECD “Employment 
Protection Legislation” database: within the Trade Union dataset, the number of union members was 
taken to calculate the ratio of the overall number of employed persons (while the OECD trade union 
density indicator is obtained with respect to employees only). With these statistics available at the 
economy wide level, our calculation has been weighted based on sectoral employment shares. We 
consider the log variation of this variable over the period 1995-2015. 
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As explained in the text, the estimated model was applied with additional specifications in order to 
check and validate its meaningfulness. Table A3 and A4 summarize the results obtained using the 
penetration of robots as the main automation proxy, estimating the model either on the whole market 
economy or on manufacturing sectors only.  
 

 
 

Finally, the main model specification presented in the text was tested to exclude endogeneity of 
predictors, as well as to check the conditions of linearity and verify the suitability of considered 
variables. As for the latter, a Ramsey Regression Equation Specification Error Test (RESET test) 
was applied, obtaining a result of no omitted variables. Also, a variance inflation factors test did not 

Variable Source n° obs. Mean Std. Dev. Min Max

Displacement own elaboration on EU KLEMS 3,128 -0.09 0.16 -1.44 0.00

Routine Jobs at risk of automation own elaboration on OECD 2,484 0.34 0.13 0.12 0.60

K investments in Hardware own elaboration on EU KLEMS 2,558 0.45 0.70 -1.81 3.51

K investments in Software own elaboration on EU KLEMS 2,550 0.50 0.52 -0.74 3.65

Robots own elaboration on WRD 3,082 2.48 2.52 -5.21 10.21

Intermediate goods own elaboration on OECD 2,806 0.19 0.49 -2.20 2.20

Chinese competition own elaboration on OECD 2,493 0.97 1.26 -4.22 6.07

Trade union's density own elaboration on OECD 3,128 -0.07 0.17 -0.55 0.18

Table A2. Descriptive statistics of variables used for econometric model

Table A3. Factors affecting displacement: results of regression model in the robot  specification, manufacturing

Measures of automation (1) (2) (3) (4) (5)

-0.0020 -0.0027 0.0060 0.0167 0.0222 **
Std. Errors 0.0101 0.0084 0.0091 0.0114 0.0085

K in Hardare components -0.0679 *** -0.0653 ** -0.1289 *** -0.0009
0.0217 0.0246 0.0395 0.0277

K in Software components -0.1171 *** -0.1092 *** -0.0994 *** -0.0910 ***
0.0321 0.0306 0.0256 0.0141

Measures of internationalization

Offshoring of intermediates 0.1549 ** 0.1312 * 0.1348 ***
0.0647 0.0672 0.0432

Chinese import competititon 0.0514 *** 0.0371 ** 0.0434 ***
0.0131 0.0165 0.0094

Trade unions' density 0.3403 * 0.0592
0.1647 0.1019

Country dummy -0.2389 ***
0.0466

Constant term -0.1865 *** -0.0560 -0.1944 *** -0.0910 -0.1499 ***
0.0234 0.0377 0.0496 0.0529 0.0355

N° observations 32 28 26 26 26
R2 0.00 0.22 0.51 0.61 0.84

Robots, operational stock

*** p < 0.01; ** p < 0.05; * p < 0.1     Robust s tandard errors to control for heteroskedasticity, clustered by industry.
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detect multicollinearity among specified predictors. To control for heteroskedasticity, robust standard 
errors were clustered per industry. 

As for endogeneity, first of all a graphical analysis of the residuals was checked, with it being possible 
in principle that the change in task content itself determines some variations in capital investments 
over new technologies, or offshoring, or unionization. Moreover, bivariate simple regressions 
between the residuals of the model and each predictor were tested. The results, excluding any 
statistical significance of these relationships, are presented in the following table. 

 

 

 

 

Routine jobs 
at risk of 
automation

K investments 
in Hardware

K investments 
in Software

Trade 
Unions

Intermediate 
goods

Chinese 
competition

Manufacturing Country 
dummy

Coefficients 0.185 0.020 0.012 0.091 -0.046 -0.018 -0.082 -0.028

Std. Errors 0.141 0.018 0.028 0.074 0.028 0.012 0.033 0.043

P>t 0.196 0.249 0.681 0.223 0.101 0.133 0.015 0.511

R2 0.024 0.019 0.003 0.021 0.039 0.032 0.083 0.006

N° of obs. 71 71 71 71 71 71 71 71

Table A4. Regressions of residuals on predictors

Graph A1.  Graphical analysis of residuals
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